Literatura académica sobre el tema "Y-valerolactone"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Y-valerolactone".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Y-valerolactone"
He, Jiang, Lu Lin, Meng Liu, Caixia Miao, Zhijie Wu, Rui Chen, Shaohua Chen et al. "A durable Ni/La-Y catalyst for efficient hydrogenation of γ-valerolactone into pentanoic biofuels". Journal of Energy Chemistry 70 (julio de 2022): 347–55. http://dx.doi.org/10.1016/j.jechem.2022.02.011.
Texto completoJayakumari, Malu Thayil y Cheralathan Kanakkampalayam Krishnan. "Tuning Al sites in Y-zeolite for selective production of ϒ-valerolactone from levulinic acid". Applied Catalysis A: General 663 (agosto de 2023): 119318. http://dx.doi.org/10.1016/j.apcata.2023.119318.
Texto completoSimakova, I. L., Yu S. Demidova, M. N. Simonov, P. S. Niphadkar, V. V. Bokade, N. Devi, P. L. Dhepe y D. Yu Murzin. "Mesoporous carbon and microporous zeolite supported Ru catalysts for selective levulinic acid hydrogenation into γ-valerolactone". Catalysis for Sustainable Energy 6, n.º 1 (1 de enero de 2019): 38–50. http://dx.doi.org/10.1515/cse-2019-0004.
Texto completoOrha, László, Ábrahám Papp, József M. Tukacs, László Kollár y László T. Mika. "Tetrabutylphosphonium 4-ethoxyvalerate as a biomass-originated media for homogeneous palladium-catalyzed Hiyama coupling reactions". Chemical Papers 74, n.º 12 (23 de julio de 2020): 4593–98. http://dx.doi.org/10.1007/s11696-020-01287-y.
Texto completoYun, Wan-Chu, Tien-Yu Lin, Hsing-Yi Chiu y Kun-Yi Andrew Lin. "Microwave Irradiation-Enhanced Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone Using Ruthenium: A Comparative Study with Conventional Heating Processes". Waste and Biomass Valorization 11, n.º 6 (25 de febrero de 2019): 2783–93. http://dx.doi.org/10.1007/s12649-019-00623-y.
Texto completoNdolomingo, Matumuene Joe y Reinout Meijboom. "Noble and Base-Metal Nanoparticles Supported on Mesoporous Metal Oxides: Efficient Catalysts for the Selective Hydrogenation of Levulinic Acid to γ-Valerolactone". Catalysis Letters 149, n.º 10 (26 de abril de 2019): 2807–22. http://dx.doi.org/10.1007/s10562-019-02790-y.
Texto completoHuang, Feng, Wenzhi Li, Tingwei Zhang, Dawei Li, Qiyu Liu, Xifeng Zhu y Longlong Ma. "Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone". Research on Chemical Intermediates 44, n.º 9 (10 de abril de 2018): 5439–53. http://dx.doi.org/10.1007/s11164-018-3432-y.
Texto completoJaimes, C., R. Dobreva-Schué, O. Giani-Beaune, F. Schué, W. Amass y A. Amass. "Ring-opening homopolymerization and copolymerization of lactones. Part 2. enzymatic degradability of poly(β-hydroxybutyrate) stereoisomers and copolymers of β-butyrolactone with ɛ-caprolactone and δ-valerolactone". Polymer International 48, n.º 1 (enero de 1999): 23–32. http://dx.doi.org/10.1002/(sici)1097-0126(199901)48:1<23::aid-pi97>3.0.co;2-y.
Texto completoKaranwal, Neha, Rizky Gilang Kurniawan, Jaeyong Park, Deepak Verma, Suryun Oh, Seung Min Kim, Sang Kyu Kwak y Jaehoon Kim. "One-pot, cascade conversion of cellulose to γ-valerolactone over a multifunctional Ru–Cu/zeolite-Y catalyst in supercritical methanol". Applied Catalysis B: Environmental, mayo de 2022, 121466. http://dx.doi.org/10.1016/j.apcatb.2022.121466.
Texto completoXu, Cancan, Bryn Brazile, Kytai Nguyen, Jun Liao, Liping Tang y Yi Hong. "Abstract 29: Biodegradable Elastomeric Polyurethane Scaffolds Mechanically Matching With Native Heart Muscle". Circulation Research 117, suppl_1 (17 de julio de 2015). http://dx.doi.org/10.1161/res.117.suppl_1.29.
Texto completoTesis sobre el tema "Y-valerolactone"
Di, Menno Di Bucchianico Daniele. "Development of processes for the valorization of lignocellulosic biomass based on renewable energies". Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR27.
Texto completoThe world is facing the impacts of climate change due to its long dependence on fossil fuels, and specifically Europe, which is facing an energy crisis, has recognized the fragility of its fossil fuel-dependent energy system and has moved strongly towards renewable energy resources. Among renewables, biomass not only powers bio-energy production but also serves as a vital source of bio-carbon, used to create high-value molecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, particularly stand out for their potential as bio-additives and bio-fuels. Acid solvolysis of hexose sugars from biomass appears to be a promising and cost-effective production route, which requires further investigation not yet found in the literature. The potential of alkyl levulinate extends to its conversion into γ-valerolactone (GVL), a promising bio-solvent, commonly obtained by hydrogenation through molecular-hydrogen. Besides being a key reagent, hydrogen is also a promising energy carrier, facilitating the integration of renewable energy sources into the market. Hydrogen energy storage systems support this integration, promoting 'green' industrial transformation. This thesis focuses on technological investigation and sustainability assessment of a potential biorefinery system, integrating lignocellulosic biomass valorization, energy production, and hydrogen generation. The study encompasses experimental investigations, optimizing technologies for the production of butyl levulinate and its subsequent hydrogenation to GVL. Sustainability considerations are fundamental to the process configuration, aligning with the global shift towards renewable and carbon bio-resources. In order to answer the question of sustainability, the research presents a first section focused on the experimental investigation of the optimal technology for the production of butyl levulinate. The solvolysis of the biomass-derived hexose Fructose to butyl levulinate was investigated, in terms of optimal process conditions and kinetic modelling. Selected an effective heterogeneous catalyst, the effect of the solvent was investigated, showing the benefits of using GVL as co-solvent, together with butanol, on the conversion and dissolution kinetics of fructose. In these conditions, the solvolysis to butyl levulinate was studied in depth from a kinetic point of view, first by proposing a model for the solvolysis of 5-HMF, an intermediate in the fructose pathway, and then extending the modelling from fructose itself. A robust kinetic model, describing the reaction mechanism of solvolysis, was defined and validated, particularly under conditions of high initial fructose concentration (applying the concept of High-gravity), and including in the modelling the kinetics of dissolution, and degradation of fructose, under acidic conditions.In the second part of the research, the technological perspective was extended to the hydrogenation of butyl levulinate to GVL. Starting from a conceptual design phase, the overall fructose-to-GVL process scheme was defined, simulated, and optimized on the basis of the process intensification concept. In the third part, the process was then dropped into a real case study in Normandy, France, adapting the analysis to the local availability of lignocellulosic biomass and wind energy. The study defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. The sustainability assessment, based on key performance indicators spanning economic, environmental, and social dimensions, culminates in an aggregated overall sustainability index. The results highlight scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising, demonstrating high economic profitability and reduced environmental impact. Finally, sensitivity analyses validate the robustness and reliability of the methodology, generally extendable also to other technological systems
Come previsto, il mondo sta affrontando gli effetti tangibili del cambiamento climatico come conseguenza di un'economia basata sui combustibili fossili per centinaia di anni. Oltre a dover affrontare e adottare misure correttive per limitare gli effetti del riscaldamento globale, l'Europa sta affrontando una grave crisi energetica, che rivela la fragilità del sistema energetico europeo, prevalentemente dipendente dalle importazioni di combustibili fossili. La geopolitica delle risorse fossili ha innescato la necessaria rimodulazione dell'economia energetica europea, che si sta spostando "forzatamente" verso le risorse energetiche rinnovabili per diventare un'economia fossile e a zero emissioni di carbonio. Nel panorama delle rinnovabili, le risorse più sfruttate sono l'energia solare, eolica e da biomassa. Oltre alla produzione di bioenergia, la biomassa è una fonte inestimabile di biocarbonio, che può essere sfruttata e valorizzata per la produzione di molecole ad alto valore aggiunto che possono essere utilizzate in vari settori industriali, per la produzione di carburanti, prodotti chimici, materiali e sostituendo i corrispondenti prodotti di origine fossile. In questo contesto, sono stati sviluppati sistemi innovativi di bioraffinazione della biomassa di seconda generazione per trasformare e decostruire la complessa struttura della biomassa in molecole piattaforma più semplici, che possono poi essere trasformate in molecole ad alto potenziale. Tra queste, gli alchil levulinati sono stati identificati per il loro notevole potenziale come bioadditivi e biocarburanti. Esteri dell'acido levulinico, questi composti possono essere ottenuti da derivati della biomassa, come i monosaccaridi dello zucchero, secondo diverse vie di reazione; tra queste, la solvolisi acida degli zuccheri esosi può essere una via di produzione promettente ed economicamente vantaggiosa, che richiede ulteriori indagini non ancora presenti in letteratura. Il potenziale degli alchil levulinati risiede anche nella possibilità di un ulteriore trasformazione mediante idrogenazione per produrre γ-valerolattone (GVL), una molecola con un mercato promettente come bio-solvente, grazie alle sue proprietà di stabilità, ecotossicità e biodegradabilità. L'uso dell'idrogeno gassoso è la via più comune per l'idrogenazione del GVL, ma, oltre a essere un reagente chimico fondamentale, l'idrogeno è anche uno dei principali protagonisti della transizione energetica. Infatti, come vettore energetico, l'idrogeno può portare alla piena penetrazione delle fonti energetiche rinnovabili nel mercato dell'energia, costituendo un complemento-tampone per lo stoccaggio delle energie rinnovabili intermittenti, attraverso la progettazione di sistemi di stoccaggio dell'energia dell'idrogeno (HydESS). L'accumulo di energia a idrogeno a lungo termine può consentire l'autosufficienza dei sistemi di energia rinnovabile, in quanto agisce da ponte tra le funzionalità dei sistemi Power-to-Hydrogen, in grado di assorbire i surplus energetici delle energie rinnovabili e di immagazzinarli, e quelle dei sistemi Hydrogen-to-Power, che restituiscono energia rinnovabile quando le fonti di energia primaria non sono disponibili. In quest'ottica, lo sviluppo di tali sistemi può portare all'integrazione completa e stabile delle fonti di energia rinnovabile in asset industriali già esistenti, così come in nuovi mercati industriali, come le bioraffinerie di biomassa lignocellulosica, promuovendo lo sviluppo di realtà industriali "verdi" in termini di trasformazione di materiali ed energia. Il mercato industriale globale si sta evolvendo verso la decarbonizzazione e la riqualificazione di diversi asset, attraverso investimenti in efficienza energetica e l'introduzione di processi green per la valorizzazione delle fonti rinnovabili, ma l'implementazione su larga scala di queste iniziative richiede un'analisi completa e approfondita della loro sostenibilità
Actas de conferencias sobre el tema "Y-valerolactone"
Xiao, Frank, Victoria Zhang y Shan Cecilia Cao. "An Efficient Biomass Conversion via Y-valerolactone". En 2019 IEEE 2nd International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS). IEEE, 2019. http://dx.doi.org/10.1109/nsens49395.2019.9293995.
Texto completo