Literatura académica sobre el tema "X-Pinch"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "X-Pinch".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "X-Pinch"
Pikuz, S. A., T. A. Shelkovenko y D. A. Hammer. "X-pinch. Part I". Plasma Physics Reports 41, n.º 4 (abril de 2015): 291–342. http://dx.doi.org/10.1134/s1063780x15040054.
Texto completoPikuz, S. A., T. A. Shelkovenko y D. A. Hammer. "X-pinch. Part II". Plasma Physics Reports 41, n.º 6 (junio de 2015): 445–91. http://dx.doi.org/10.1134/s1063780x15060045.
Texto completoRiordan, James R. "X-pinch flash photography". Physics Today 54, n.º 12 (diciembre de 2001): 9. http://dx.doi.org/10.1063/1.4796251.
Texto completoTong, Zhao, Zou Xiao-Bing, Zhang Ran y Wang Xin-Xin. "X-ray backlighting of two-wire Z-pinch plasma using X-pinch". Chinese Physics B 19, n.º 7 (julio de 2010): 075205. http://dx.doi.org/10.1088/1674-1056/19/7/075205.
Texto completoLebedev, S. V., F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, M. Zakaullah, S. A. Pikuz, T. A. Shelkovenko y D. A. Hammer. "X-ray backlighting of wire array Z-pinch implosions using X pinch". Review of Scientific Instruments 72, n.º 1 (enero de 2001): 671–73. http://dx.doi.org/10.1063/1.1315647.
Texto completoWu, J., L. Wang, A. Qiu, J. Han, M. Li, T. Lei, P. Cong, M. Qiu, H. Yang y M. Lv. "Experimental investigations of X-pinch backlighters on QiangGuang-1 generator". Laser and Particle Beams 29, n.º 2 (22 de marzo de 2011): 155–60. http://dx.doi.org/10.1017/s0263034611000024.
Texto completoZhao, Shen, Xinlei Zhu, Ran Zhang, Haiyun Luo, Xiaobing Zou y Xinxin Wang. "Current division between two paralleled X-pinches". Laser and Particle Beams 32, n.º 3 (15 de julio de 2014): 437–42. http://dx.doi.org/10.1017/s0263034614000354.
Texto completoSkoulakis, A., G. Koundourakis, A. Ciardi, E. Kaselouris, I. Fitilis, J. Chatzakis, M. Bakarezos et al. "High performance simulations of a single X-pinch". Plasma Physics and Controlled Fusion 64, n.º 2 (30 de diciembre de 2021): 025003. http://dx.doi.org/10.1088/1361-6587/ac3deb.
Texto completoValdivia, M. P., G. W. Collins IV, F. Conti y F. N. Beg. "Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics". Plasma Physics and Controlled Fusion 64, n.º 3 (28 de enero de 2022): 035011. http://dx.doi.org/10.1088/1361-6587/ac4b95.
Texto completoShelkovenko, T. A., S. A. Pikuz, R. D. McBride, P. F. Knapp, G. Wilhelm, D. B. Sinars, D. A. Hammer y N. Yu Orlov. "Symmetric multilayer megampere X-pinch". Plasma Physics Reports 36, n.º 1 (enero de 2010): 50–66. http://dx.doi.org/10.1134/s1063780x10010046.
Texto completoTesis sobre el tema "X-Pinch"
Beg, Farhat Nadeem. "X-ray and optical studies of z-pinch plasmas". Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307452.
Texto completoNave, Gillian. "Soft X-ray spectroscopy of gas-puff z-pinch". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38116.
Texto completoChallis, C. D. "X-ray observations of an annular gas-puff z-pinch". Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/37962.
Texto completoHammel, Benjamin Diethelm. "Study Of Intense Energetic Electron Beams In X-Pinch Experiments". Thesis, University of Nevada, Reno, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10161337.
Texto completoHigh-energy electron beams, with electron kinetic energies (∼1 MeV) much greater than the surrounding plasma temperature (<1 keV), are a common feature in Z-pinch pulsed power experiments. Their existence is indicated by non-thermal spectral signatures, such as high-energy Bremsstrahlung photons from the anode hardware and characteristic X-ray emission not representative of the pinch "hot-spot" temperatures. Despite their regular occurrence, the properties of these beams (kinetic energy, current) are not well known.
This dissertation describes an experimental study of X-pinch generated high-intensity electron beams, performed on the 1 MA pulsed power generator at the Nevada Terawatt Facility, and the feasibility of a novel method for inferring the total kinetic energy in the beam, through time-resolved measurements of the beam-induced shock that propagates through the anode.
Badaye, Massoud. "Investigation and improvement of a Z-pinch plasma X-ray source". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39468.
Texto completoIt is shown that the system can be improved considerably by modifying the gas puff design. Three gas puffs developed in this work are optimized for x-ray emission from argon, krypton, and neon gases. In the optimized conditions the output x-ray energies of 0.5 J from Ar-K shell, 2 J from Kr-L shell, and more than 2 J from Ne-K shell are obtained.
The implosion dynamics is studied with different gases under varying conditions. The average implosion velocity, the final pinch diameter, the current waveform, and the emitted x-ray energy are measured. The pinched plasma parameters such as temperature, density, and the average ionic state are estimated using the corona model calculations, and the pinched current waveforms. The spectrum of the neon radiation clearly shows the characteristic H-like and He-like lines. The neon spectrum is used to estimate the plasma temperature.
The dynamic performance of the magnetically induced compression gas puff is studied carefully. A special ion probe was developed for studying the dynamic parameters of the gas puff. The ion measurements with the probe have led to the characterization of the gas puff performance under varying operating conditions. It is shown that ions are generated through photoionization of the injected gas by the UV light emitted from the inside of the gas puff plenum through the nozzle. It is found that the jet velocity and ion density can be in excess of $3 times10 sp3$ m/s and $2 times10 sp{14}$ cm$ sp{-3}$, respectively.
A theoretical model is developed to simulate the plasma evolution in the gas puff. This model uses the magneto hydrodynamic (MHD) equations solved by the finite difference method. The magnetic field in the vacuum is calculated using the Laplace equation and self consistent boundary conditions. The model predicts the evolution of plasma variables such as density, temperature, velocity, and magnetic field. It also calculates the variation of the total mass flow rate, optical output, and the ionic signal. The simulation results are shown to compare favourably with the experimental measurements.
ROSCH, RUDOLF. "Etude de l'emission x dans les plasmas d'aluminium de type z-pinch". Paris 11, 1999. http://www.theses.fr/1999PA112020.
Texto completoBonomo, Federica. "Experimental Measurements of Soft X-Ray Emissivity Distribution and Electron Temperature Profile in Reversed Field Pinch Plasmas". Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425153.
Texto completoDelaunay, Alice. "Polymorphisme (β-γ-δ) et fusion de l’étain sous sollicitations dynamiques : analyses macroscopique et cristallographique". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0028.
Texto completoPolymorphic transitions and melting of tin were studied under dynamic loading by coupling velocimetry and X-ray diffraction in order to determine transition pressures and to identify phases in presence. In the literature, different onset pressures were measured for the β-γtransition between static and dynamic loading, and even for one same loading type. Thus, further work is needed to characterize the formation conditions of the γ phase: in-situ X-ray diffraction provides data on microstructure evolution in time, on phases in presence, on orientational relationship and on the kinetics of the transformation. These data can be used totest theoretical hypotheses on the transition mechanisms, kinetics, and possible twinning. Previous impact experiments were performed at CEA Gramat and at Advanced Photon Source(APS) facilities, on single crystal tin of (110) orientation with a launcher and a short X-raysource. The present investigation is a continuation of that exploratory study based on an optimized configuration to highlight the γ phase from three orientations of the β phase: (110),(100) and (001). Shock experiments were performed at CEA Gramat with an X-Pinch generator to obtain X-ray diffraction patterns both under shock compression and in release. For each orientation, varying the time delay between the shock and the X-ray probe allowed studying the evolution of diffraction patterns directly correlated with microstructural modifications and transition kinetics. Complementary shock experiments were performed at the synchrotron facilities of APS to probe a time-resolved evolution of the sample for each shot, which provided additional results. These data enable to propose kinetic hypothesis for the transition between β and γ. Furthermore they are consistent with the theoretical mechanism which was validated in quasi-static anvil cell experiments recently. Other direct and reverse transitions between β, γ and δ phases as well as melting on release were observed according to the applied pressure. All these results build up a database to improve multiphaseequations of state used in simulations of dynamic processes
Bavay, Mathias. "Compression de flux magnétique dans le régime sub-microseconde pour l'obtention de hautes pressions et de rayonnement X intense". Paris 11, 2002. http://www.theses.fr/2002PA112100.
Texto completoIn order to study the feasibility of creating an intense X ray source for France, the Centre d'Études de Gramat (CEG) is investigating several technologies. The Syrinx project is looking at the potential of High Pulse Power technologies for Isentropic Compression Experiments, High Temperatures Hohlraums and Radiation Hardening (X rays between 1 eV and 10 eV radiated by a Z-pinch). Then it is necessary to provide a power amplification stage allowing electrical currents of the order of 10 MA with a hundred nanoseconds rise rime to be delivered to the load. Usually, generators use pulse forming lines or plasma opening switches. Magnetic Flux Compression, another power amplification possibility, is studied in this dissertation. It has enabled the compression of the 100 ns pulse of the Z machine (Sandia National Laboratories) into a 40 ns pulse and the compression of the 1 ms pulse of the ECF generator (CEG) into a 100 ns pulse. This technology bas the advantage of a characteristic implosion time less than a micro second avoiding many of the problems the explosive driven flux compression ran into. This research work consisted initially in finding the right parameters for several codes (circuits codes, plasma codes. . . ) in order to adapt them to the Flux Compression. These numerical tools have then been used to design experiments on Z and ECF. These experiments have reached 5 Mbar with shock and more than 2 Mbar in isentropic compression as well as 110 eV in a hohlraum. Insights gleaned from the interpretation of the shots have been compared to our understanding of the power amplification system and of the loads. Finally, this allows us to improve our numerical tools and to optimize the Flux Compression concept. The work which has been done should lead to the extrapolation of the concept to an X ray generator of the 60 MA class
Pandarus, Valerica. "Complexes pinceurs de type diphosphinito (POCOP) de Ni(II) / Ni(III)". Thèse, 2008. http://hdl.handle.net/1866/7845.
Texto completoLibros sobre el tema "X-Pinch"
Books, Bw Recipe. Pinch of Patience a Dash of Kindness: Funny 6 X 9 Inch Blank Recipe Book 120 Pages. Independently Published, 2019.
Buscar texto completoDrake, Gwasg Addysgol. Prosiect X: Band 1 Pinc - Fy Nghartref. Drake Educational Associates Limted, 2021.
Buscar texto completoNotebook, PinchyZv y PinchyZv Notebook. Notebook: Pinchy Pinchy , Journal for Writing, College Ruled Size 6 X 9 , 110 Pages. Independently Published, 2019.
Buscar texto completoCapítulos de libros sobre el tema "X-Pinch"
Robledo-Martinez, A., R. Aliaga-Rossel, I. H. Mitchell, J. P. Chittenden, A. E. Dangor y M. G. Haines. "Hard X-Ray Diagnostic of Z-Pinch Discharges". En Plasma Physics, 491–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4758-3_58.
Texto completoDasgupta, A., R. W. Clark, J. Davis y J. G. Giuliani. "X-ray Spectroscopy of Astrophysical and Laboratory Z-pinch Plasmas". En Recent Advances in Spectroscopy, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10322-3_2.
Texto completoBystritskii, Vitaly, Frank J. Wessel, Norman Rostoker y Hafiz Rahman. "Novel Staged Z-Pinch Concept as Super Radiant X-Ray Source for ICF". En Current Trends in International Fusion Research, 347–64. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5867-5_22.
Texto completoFidelman, Peggy y Peter Stone. "The Chin Pinch: A Case Study in Skill Learning on a Legged Robot". En RoboCup 2006: Robot Soccer World Cup X, 59–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74024-7_6.
Texto completo"Divergence measurement of Ne-like Ar soft X-ray laser beam generated by capillary Z-pinch discharge". En X-Ray Lasers 2004, 189–92. CRC Press, 2005. http://dx.doi.org/10.1201/9781482269208-39.
Texto completoWakatani, Masahiro. "The Mhd Equilibrium Of A Toroidal Plasma In Three-Dimensional Geometry". En Stellarator and Heliotron Devices, 101–47. Oxford University PressNew York, NY, 1998. http://dx.doi.org/10.1093/oso/9780195078312.003.0004.
Texto completoMalpas, R. "Foreword to the first edition". En Pinch Analysis and Process Integration, xiii. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50002-x.
Texto completo"Notation". En Pinch Analysis and Process Integration, 381–82. Elsevier, 2007. http://dx.doi.org/10.1016/b978-075068260-2.50016-x.
Texto completo"Index". En Pinch Analysis for Energy and Carbon Footprint Reduction, 537–48. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102536-9.09994-x.
Texto completoBandyopadhyay, Santanu. "Design of renewable energy systems incorporating uncertainties through pinch analysis". En Computer Aided Chemical Engineering, 1994–98. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-54298-4.50177-x.
Texto completoActas de conferencias sobre el tema "X-Pinch"
Yao, Y., J. Struska y S. Bland. "Portable x-pinch driver development for dense plasma measurements". En 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626902.
Texto completoLi, J., Y. Yang, H. Liu, K. Deng, J. Yuan, W. Xie y Q. Wu. "Development of X-Pinch based X-ray imaging technique for diagnosis of transient processes". En 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626845.
Texto completoPikuz, S. A., P. A. Gourdain, T. A. Shelkovenko, I. N. Tilikin, J. B. Greenly, L. Atoyan y D. A. Hammer. "Magnetized hybrid X-pinch". En 9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904793.
Texto completoZou, X. B., X. X. Wang y Rui Liu. "X-ray emission from an X-pinch". En 2009 IEEE 36th International Conference on Plasma Science (ICOPS). IEEE, 2009. http://dx.doi.org/10.1109/plasma.2009.5227701.
Texto completoZhang, Ran, Tong Zhao, Xiaobing Zou, Xinlei Zhu y Xinxin Wang. "X-pinch applications in X-ray radiography and design of compact table-top X-pinch device". En 2010 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2010. http://dx.doi.org/10.1109/ipmhvc.2010.5958302.
Texto completoShelkovenko, Tatiana A., Sergey A. Pikuz, Adam D. Cahill, Jack T. Blanchard, David A. Hammer y Daniel B. Sinars. "X pinch with conical electrodes". En 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534347.
Texto completoBlesener, I. C., P. U. Duselis, B. R. Kusse, M. D. Mitchell, S. A. Pikuz y T. A. Shelkovenko. "Positive polarity x-pinch operation". En The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707152.
Texto completoPikuz, Sergei A., ByungMoo Song, Tatyana A. Shelkovenko, Katherine M. Chandler, Marc D. Mitchell y David A. Hammer. "X-pinch source size measurements". En Optical Science and Technology, SPIE's 48th Annual Meeting, editado por George A. Kyrala, Jean-Claude J. Gauthier, Carolyn A. MacDonald y Ali M. Khounsary. SPIE, 2004. http://dx.doi.org/10.1117/12.508752.
Texto completoPikuz, Sergey A., Tatiana A. Shelkovenko, Cad L. Hoyt, Adam D. Cahill, David A. Hammer y Ivan N. Tilikin. "X-ray absorption spectroscopy of X-pinch plasmas". En 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6635137.
Texto completoKalantar, D. H., P. A. Hammer, N. Qi y K. C. Mittal. "Dense X-pinch plasmas for X-ray microlithography". En 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110563.
Texto completoInformes sobre el tema "X-Pinch"
Sanford, T. W. L., G. O. Allshouse y B. M. Marder. X-ray power increase from symmetrized wire-array z-pinch implosions. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/369656.
Texto completoHammer, David A. Spectroscopic Determination of the Magnetic Fields in Exploding Wire and X-pinch Plasmas. Office of Scientific and Technical Information (OSTI), diciembre de 2013. http://dx.doi.org/10.2172/1111120.
Texto completoChartas, G. y S. Hokin. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch. Office of Scientific and Technical Information (OSTI), septiembre de 1991. http://dx.doi.org/10.2172/5218161.
Texto completoBeg, Farhat N. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch. Office of Scientific and Technical Information (OSTI), agosto de 2013. http://dx.doi.org/10.2172/1089941.
Texto completoSanford, T. W. L., T. J. Nash y B. M. Marder. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays. Office of Scientific and Technical Information (OSTI), marzo de 1996. http://dx.doi.org/10.2172/211368.
Texto completoDavid Hammer. Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas. Office of Scientific and Technical Information (OSTI), diciembre de 2008. http://dx.doi.org/10.2172/943298.
Texto completoBOWERS, RICHARD, GORDON A. CHANDLER, DAVID E. HEBRON, RAMON J. LEEPER, WALTER MATUSLKA, RAYMOND CECIL MOCK, THOMAS J. NASH et al. Z-Pinch Generated X-Rays in Static-Wall Hohlraum Geometry Demonstrate Potential for Indirect-Drive ICF Studies. Office of Scientific and Technical Information (OSTI), noviembre de 1999. http://dx.doi.org/10.2172/14927.
Texto completoCordova, Steve Ray, Dean Curtis Rovang, Salvador Portillo, Bryan Velten Oliver, Nichelle Lee Bruner y Derek Raymond Ziska. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography. Office of Scientific and Technical Information (OSTI), octubre de 2007. http://dx.doi.org/10.2172/920805.
Texto completoHammer, David. X-Ray Spectroscopic Studies of X-Pinch Plasmas with 3-5 Picosecond Resolution: A Quest for Clear Experimental Evidence for Radiative Collapse in the X-ray Spectra (Final Report). Office of Scientific and Technical Information (OSTI), diciembre de 2021. http://dx.doi.org/10.2172/1837836.
Texto completoBennett, Nichelle. A hybrid-kinetic simulation tool for non-thermal warm x-ray z-pinch sources, with gas-puff and wire array exemplars. Office of Scientific and Technical Information (OSTI), octubre de 2024. https://doi.org/10.2172/2480192.
Texto completo