Literatura académica sobre el tema "Wu dao yin lue"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Wu dao yin lue".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Wu dao yin lue"

1

Tu, Chungmin Maria. "Reversal Is the Movement of the Way: The Deleuzian Reconceptualization of Daoist Paradox". Religions 14, n.º 11 (8 de noviembre de 2023): 1392. http://dx.doi.org/10.3390/rel14111392.

Texto completo
Resumen
This paper aims to unravel the underlying resonance between the Daoist Way and the Deleuzian idea of an aleatory point. The Daoist Way is explicated as the zhong dao 中道 or the Middle-Way, viewed in terms of interactivity between such Daoist-seeming polarities as you/wu (determinate/indeterminate) and Yin and Yang. The first part of the paper approaches the Daoist Way in terms of the concept of zhong 中 or the “Middle”, to explore the functionality of the Way and to comprehend the Chinese philosophical concept of the Middle, using the Deleuzian lens of the “aleatory point”. The “Middle” here is understood as process, change, or flux, whose volatility is not representational or repeatable. It is this irrepresentability that renders the concept of the “Middle” comparable with the Deleuzian notion of aleatory point. The second part of the paper probes the most fundamental paradoxes revolving around the Daoist Middle-Way to unveil the relationship between the Way and Chaos and to deconstruct the traditional misconception of Yin/Yang dynamics as unity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xue, Y., J. Hu, D. Liu, J. Li, H. Wu, C. Tan, L. Dai, Y. Yan, H. Li y H. Zou. "AB0968 RAPID ONSET OF EFFICACY IN CHINESE PATIENTS WITH ACTIVE RADIOGRAPHIC AXIAL SPONDYLOARTHRITIS TREATED WITH IXEKIZUMAB: A PHASE 3 STUDY". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de mayo de 2023): 1703. http://dx.doi.org/10.1136/annrheumdis-2023-eular.1619.

Texto completo
Resumen
BackgroundIxekizumab, a high-affinity monoclonal antibody that selectively targets interleukin-17A, has demonstrated efficacy in global clinical trials in patients with active radiographic axial spondyloarthritis (r-axSpA)/ankylosing spondylitis (AS)[1,2].Rapid onset of clinical improvement is one of the most important needs of treatment for r-axSpA patients.ObjectivesTo evaluate the onset time of ixekizumab in Chinese patients with r-axSpA.MethodsThis report evaluated efficacy onset time of r-axSpA patients treated with ixekizumab compared with placebo based on data from a phase 3 study in China.The major secondary efficacy measures in this report included Assessment of Spondyloarthritis International Society (ASAS) 40 response, ASAS 20 response, change from baseline in Ankylosing Spondylitis Disease Activity Score (ASDAS), change from baseline in Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), change from baseline in Bath Ankylosing Spondylitis Functional Index (BASFI), and ASDAS <2.1 response.Other secondary efficacy measures in this report included change from baseline of ASAS individual components (like patient global, Spinal pain, Inflammation, high sensitivity C-reactive protein [hsCRP]), proportion of patients who experience clinically important improvement (change of ASDAS from baseline ≥1.1), major improvement (change of ASDAS from baseline ≥2.0), and BASDAI 50 response. All efficacy measures were evaluated from week 0 through week 52.A logistic regression model and mixed-effects model of repeated measures (MMRM) were used to analyze categorical and continuous measures from week 0 to 16 (placebo-controlled period), and categorical missing data were imputed using non-responder imputation (NRI).ResultsMore patients achieved ASAS40 and ASAS20 response as early as week 1 (p = 0.042 and p < 0.001) in the ixekizumab-treated group compared with placebo.In addition, statistically significant (p < 0.05) improvements were observed as early as week 1 for the ixekizumab group compared to placebo in almost all efficacy measures mentioned above.For other outcomes including proportion of patients who experience major improvement and BASDAI 50 response, differences were evident (p < 0.05) by week 2 in the ixekizumab group compared with placebo.Furthermore, ixekizumab sustained high efficacy in all efficacy measures through 52 weeks.ConclusionIxekizumab demonstrated a rapid onset of efficacy improvements on ASAS response, ASAS core set values, disease activity and function in Chinese patients with r-axSpA.References[1]Désirée van der Heijde, James Cheng-Chung Wei, Maxime Dougados, et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial.Lancet2018; 392: 2441–51.[2]Deodhar A, Poddubnyy D, Pacheco-Tena C, et al. Efficacy and safety of ixekizumab in the treatment of radiographic axial spondyloarthritis: sixteen-week results from a phase III randomized, double-blind, placebo-controlled trial in patients with prior inadequate response to or intolerance of tumor necrosis factor inhibitors.Arthritis Rheumatol2019; 71:599–611.AcknowledgementsThe author would like to thank Zipei Xiao for medical assistance and Fei Ji for peer review (both of Eli Lilly and Company employees), and all study participants.Disclosure of InterestsYU XUE Consultant of: Yu Xue has been investigator of Eli Lilly and Company, Jiankang Hu Consultant of: Jiankang Hu has been investigator of Eli Lilly and Company, Dongzhou Liu Consultant of: DongZhou Liu has been investigator of Eli Lilly and Company, Jingyang Li Consultant of: Jingyang Li has been investigator of Eli Lilly and Company, Huaxiang Wu Consultant of: Huaxiang Wu has been investigator of Eli Lilly and Company, Chunyu Tan Consultant of: Chunyu Tan has been investigator of Eli Lilly and Company, Lie Dai Consultant of: Lie Dai has been investigator of Eli Lilly and Company, Yan Yan Employee of: Yan Yan is employee of Eli Lilly and Company, Hongying Li Shareholder of: HongYing Li is minor stockholder of Eli lilly and Company, Employee of: HongYing Li is employee of Eli Lilly and Company, Hejian Zou Consultant of: Hejian Zou has been investigator of Eli Lilly and Company.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chiromo, Humphrey y Humphrey Chiromo. "Modified Metal Organic Frameworks Supported Ni Single Atom Catalyst for Enhanced Photocatalytic Hydrogen Evolution Reaction". ECS Meeting Abstracts MA2023-01, n.º 17 (28 de agosto de 2023): 2800. http://dx.doi.org/10.1149/ma2023-01172800mtgabs.

Texto completo
Resumen
Abstract Downsizing metal nanoparticle catalysts to form single-atom catalysts (SACs) has proven to be one of the best ways to enhance the catalysts’ activity and selectivity1-2 due to their unique characteristics such as nearly 100% atom utilization and well-defined active sites.3 However, the broad application of SACs in catalytic reactions is limited by their poor stability as they possess high surface energy and thus tend to aggregate and form nanoclusters or nanoparticles.4 To address this challenge, various supports such as metal oxides, carbon materials, and porous materials are widely used to stabilize the SACs.5 Metal organic frameworks (MOFs), a class of porous crystalline materials, have proven to be an ideal candidate to support SACs owing to their high surface area, high porosity, and abundant potential anchoring sites.6 It has been shown that immobilizing SACs on MOFs, which forms MOF supported SACs, can integrate the unique properties of SACs and MOFs and led to remarkable catalytic activity, selectivity, and stability toward various catalytic reactions.6-8 Application of MOF supported SACs in photocatalysis, organic linkers of metal-organic frameworks act as photosensitive units,9 However most pristine metal-organic frameworks possesses poor light absorption properties due to wide band gap.9To enhance the light harvesting properties of the metal organic framework its organic linker is functionalized.10-11 In my poster presentation, I will present my work where post-synthetic modification of UiO-66-NH2 MOF linker with 3,4,9,10 perylene tetracarboxylic dianhydride (PDA) an organic molecule with broad absorption edge,12and immobilization of Ni single atom catalyst on the zirconium cluster of the MOF was done. This resulted in enhanced optical properties and charge separation efficiency which was proved by a combination of UV-visible spectroscopy (UV-Vis), photoelectrochemical techniques, and X-ray absorption spectroscopy (XAS). Observed photophysical effects posed by the modifications of the UiO-66-NH2 were evaluated by photocatalytic hydrogen generation. References Yan, J.; Kong, L.; Ji, Y.; White, J.; Li, Y.; Zhang, J.; An, P.; Liu, S.; Lee, S.-T.; Ma, T., Single atom tungsten doped ultrathin α-Ni (OH) 2 for enhanced electrocatalytic water oxidation. Nature communications 2019, 10 (1), 1-10. Jiao, L.; Jiang, H.-L., Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5 (4), 786-804. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T., Single-atom catalysis of CO oxidation using Pt1/FeO x. Nature chemistry 2011, 3 (8), 634-641. Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D., General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature chemistry 2021, 13 (9), 887-894. Wu, J.; Xiong, L.; Zhao, B.; Liu, M.; Huang, L., Densely populated single atom catalysts. Small Methods 2020, 4 (2), 1900540. Huang, H.; Shen, K.; Chen, F.; Li, Y., Metal–organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catalysis 2020, 10 (12), 6579-6586. Qu, W.; Chen, C.; Tang, Z.; Wen, H.; Hu, L.; Xia, D.; Tian, S.; Zhao, H.; He, C.; Shu, D., Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coordination Chemistry Reviews 2023, 474, 214855. Szilágyi, P.; Rogers, D.; Zaiser, I.; Callini, E.; Turner, S.; Borgschulte, A.; Züttel, A.; Geerlings, H.; Hirscher, M.; Dam, B., Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms. Journal of Materials Chemistry A 2017, 5 (30), 15559-15566. He, J.; Wang, J.; Chen, Y.; Zhang, J.; Duan, D.; Wang, Y.; Yan, Z., A dye-sensitized Pt@ UiO-66 (Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chemical communications 2014, 50 (53), 7063-7066. Elcheikh Mahmoud, M.; Audi, H.; Assoud, A.; Ghaddar, T. H.; Hmadeh, M., Metal–Organic Framework Photocatalyst Incorporating Bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(II) for Visible-Light-Driven Carbon Dioxide Reduction. Journal of the American Chemical Society 2019, 141 (17), 7115-7121. Hendrickx, K.; Joos, J. J.; De Vos, A.; Poelman, D.; Smet, P. F.; Van Speybroeck, V.; Van Der Voort, P.; Lejaeghere, K., Exploring lanthanide doping in UiO-66: a combined experimental and computational study of the electronic structure. Inorganic Chemistry 2018, 57 (9), 5463-5474. Yu, H.; Joo, P.; Lee, D.; Kim, B. S.; Oh, J. H., Photoinduced Charge‐Carrier Dynamics of Phototransistors Based on Perylene Diimide/Reduced Graphene Oxide Core/Shell p–n Junction Nanowires. Advanced Optical Materials 2015, 3 (2), 241-247.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Yu Mu, Hsuan, Yen-Nhi Ngoc Ta, Jing Rui Max Tham, Fu-Fei Hsu, Yu-Chieh Lin, Hsi-Chien Huang, Yun-Chieh Sung et al. "Abstract 5737: Enhancing cancer treatment Via a nanostructured chemoimmunotherapy gel facilitating interleukin-2 delivery and immunogenic cell death induction". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 5737. http://dx.doi.org/10.1158/1538-7445.am2024-5737.

Texto completo
Resumen
Abstract Background: The landscape of immunotherapy, employing recombinant cytokines like interleukin-2 (IL-2), confronts challenges marked by its short half-life, systemic toxicity, and constrained tumor accumulation. These hurdles are particularly evident in the context of the immunosuppressive milieu characterizing pancreatic ductal adenocarcinoma (PDAC). Chemo-immuno-therapeutic synergies, notably those provoking immunogenic cell death (ICD), have demonstrated superior efficacy. This investigation delves into Pt-NHC as a type II ICD inducer to surmount immunosuppression and amplify antitumor immunity within a highly tumor-accumulated liposomal drug delivery system. Additionally, the co-administration of the angiotensin receptor blocker, losartan, mitigates desmoplasia in PDAC, further augmenting the efficacy of immunotherapy. Methods: To address the constraints of IL-2, a lipid-coated nanogel, IL2-Pt@Nanogel, was innovated, amalgamating silk fibroin-loaded IL-2 with Pt-NHC. The nanogel aimed to enhance IL-2 pharmacokinetics and optimize tumor targeting. Concurrently, losartan was employed to alleviate desmoplasia within the tumor microenvironment. Result: The chemoimmunotherapy nanogel, when coupled with losartan, showcased therapeutic potential in murine models of desmoplastic PDAC. Pt-NHC induced ER-localized reactive oxygen species (ROS) and DAMP release, reshaping the immunosuppressive microenvironment by repolarizing M2-type macrophages to M1 and diminishing the regulatory T-cell population. Co-delivery of IL-2 and Pt-NHC in the nanogel enhanced T-cell infiltration and activation, curbing tumor progression in primary and liver metastasized PDAC models. Importantly, the addition of losartan reduced collagen accumulation within tumors, resulting in heightened infiltration of effector T cells and more pronounced suppression of tumor growth in PDAC and metastasized liver. Conclusion: This study introduces an innovative nanogel delivery system (IL2-Pt@Nanogel) for chemoimmunotherapy, effectively addressing the challenges associated with IL-2 therapy. Leveraging the enhanced permeability and retention (EPR) effect, the nanogel improves IL-2 stability and tumor delivery. Pt-NHC incorporation induces ICD, reshaping the tumor microenvironment, and in synergy with losartan, elicits robust anticancer immunity. This strategy holds promise for clinical translation as a secure and efficient treatment for immunosuppressive and desmoplastic cancers, such as PDAC, presenting a distinctive therapeutic avenue. Citation Format: Hsuan Yu Mu, Yen-Nhi Ngoc Ta, Jing Rui Max Tham, Fu-Fei Hsu, Yu-Chieh Lin, Hsi-Chien Huang, Yun-Chieh Sung, Chih-I Huang, Ching-Ling Wu, Chao-Hung Chang, Sheng Yang, Tsung-Ying Lee, Jane Wang, Dan G. Duda, Yves Boucher, Jen-Huang Huang, Wee Han Ang, Yunching Chen. Enhancing cancer treatment Via a nanostructured chemoimmunotherapy gel facilitating interleukin-2 delivery and immunogenic cell death induction [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 5737.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Song, Chaojie, Roberto Neagu y Khalid Fatih. "A Study of V(IV/V) and V(II/III) Reactions on Carbon Based Electrodes". ECS Meeting Abstracts MA2023-01, n.º 3 (28 de agosto de 2023): 798. http://dx.doi.org/10.1149/ma2023-013798mtgabs.

Texto completo
Resumen
The vanadium redox flow battery (VRFB) is one of the most promising energy storage technologies for large scale commercialization. Carbon based electrodes, such as carbon felts or carbon paper, are used for V(II/III) and V(IV/V) reactions. To improve the vanadium redox reaction kinetics, the carbon electrodes are usually activated by a variety of methods such as thermal treatment, heteroatom doping, catalyst incorporation etc. [1] It is generally considered that surface functional group such as C–OH, C=O play an important role in vanadium redox reaction [1-6]. Even though there are reports showing higher surface functional group content e.g. total C–O content leads to improved vanadium redox reaction kinetics [2-6], qualitative correlation of the surface property of the carbon materials and the vanadium redox reaction is not reported. There is a need for fundamental understanding of the surface properties of the carbon electrodes and their relation with the reaction kinetics, including the key parameters that determine them. In this work, using cyclic voltammetry (CV), we studied the surface properties of a variety of carbon based electrodes (glassy carbon (GC), edge plane pyrolytic graphite, base plane pyrolitic graphite, graphite (from Pine Research, called graphite-Pine thereafter), graphite rod, and H2SO4 soaked graphite rod), and the V(II/III) and V(IV/V) reaction kinetics on these electrodes. The goal of soaking the graphite rod electrode in H2SO4 is to activate the electrode and make it comparable to the carbon felt electrode [1]. XPS was also used to analyze the functional group. The relationship between the surface properties and the reaction kinetic parameters was analyzed. Fig. 1 compares the cyclic voltammograms (CV) of the edge plane, basal plane graphite and GC electrodes in 2 M H2SO4. Two redox couples are observed, ascribed to C=O and COOH group redox peak respectively [7]. On basal plane electrode, these two redox peaks are less significant, and an extra reduction peak is observed at 0.24 V due to the C–OH reduction. On the GC electrode, the C=O redox peak is still discernable but the COOH redox peak is almost undetectable. A capacitance region appears between 0.6 – 0.75 V vs Ag/AgCl for all these electrodes. Similar features are observed with the graphite-Pine, graphite rod and H2SO4 soaked graphite rod electrodes with significantly enhanced redox peaks and larger capacitance. The H2SO4 soaked graphite rod electrode presents the highest surface functional group density and capacitance. XPS also shows that the H2SO4 soaked graphite rod electrode has the highest total C–O content. CV of V(IV/V) and V(II/III) were measured using these electrodes at different scan rates. Fig. 2 shows the CV of V(IV/V) reaction on these electrodes. The three graphite rod electrodes show better reversible feature than the edge plane, basal plane and GC electrodes. Diffusion coefficient, transfer coefficient and reaction rate constant were obtained from the CVs. The diffusion coefficient follows the sequence of soaked graphite rod > graphite rod > Graphite-Pine > Edge plane > GC > basal plane electrode. The transfer coefficient and reaction rate constant are also different for these electrodes. Similarly, the diffusion coefficient, transfer coefficient and reaction rate constant are obtained for the V(II/III) reaction. The diffusion coefficient and reaction rate constant for the V(II/III) reaction are smaller than that for the V(IV/V) reaction on the corresponding electrodes. For both V(IV/V) and V(II/III), a linear relationship was found for diffusion coefficient versus the logarithm of capacitance and C=O group functional group. Higher value of log(capacitance) and log(C=O density) leads to larger diffusion coefficient. However, there is no clear relationship between transfer coefficient, reaction rate constant vs capacitance or C=O density. It seems that the capacitance and C=O functional group density are the importance parameters determining the vanadium redox reaction kinetics. References He, Y. Lv, T. Zhang, Y. Zhu, L. Dai, S. Yao., W. Zhu, L. Wang, Chem. Eng. J., 427 (2022) 131680 Zhang, J. Xia, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochim. Acta 89 (2013) 429– 435 Liu, L. Yang, Q. Xu, C. Yan, RSC Adv., 2014, 4, 55666 Choi, H. Noh, S. Kim, R. Kim, R. Kim, J. Lee, J. Heo, H.-T. Kim, J. Energy Storage, 21 (2019) 321 – 327 Eifert, R. Banerjee, Z. Jusys, R. Zeis, J. Electrochem. Soc., 165 (2018) A2577 – A2586 Leuna, D. Priyadarshani, A. K. Tripathi, M. Neergat, J. Electroanal. Chem., 878 (2020) 114590 K. Singh, M. Pahlevaninezhad, N. Yasri, E. P. L. Roberts, ChemSusChem 2021, 14, 2100–2111 Figure 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Amin, Adam Aliathun y Eva Imania Eliasa. "Parenting Skills as The Closest Teacher to Early Childhood at Home". JPUD - Jurnal Pendidikan Usia Dini 17, n.º 2 (30 de noviembre de 2023): 312–30. http://dx.doi.org/10.21009/jpud.172.09.

Texto completo
Resumen
Parents play an important role in the development of their children. This research reflects the role of parents in developing children. Through four stages of identification, screening, eligibility, and acceptable results, this method uses a systematic literature review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) method. The findings from the fourteen articles examined show that parenting skills play an important role in a child's growth and development from birth to death. The determining factor in the development of physical, motoric, moral, language, social-emotional, and life skills aspects is the role of both parents as important teachers for children from birth to adulthood. Parents can also use a variety of parenting strategies and skills, many of which they have learned throughout their lives and passed on to their children, to help their children grow. Keywords: Role of Parents, Child Development, first education for children References: Albanese, A. M., Russo, G. R., & Geller, P. A. (2019). The role of parental self‐efficacy in parent and child well‐being. Child Care Health Dev, 45(3), 333–363. https://doi.org/10.1111/cch.12661. Almås, I., Cappelen, A. W., Sørensen, E. Ø., Tungodden, B., Alm, I., & Tungodden, B. (2010). Fairness and the Development of Inequality Acceptance Supporting materials for “ Fairness and the development of inequality acceptance .” Science, 328(5982), 1176–1178. https://doi.org/10.1126/science.1187300. Ahmadi, Abu. 2004. Psikologi Belajar. Jakarta : Rineka Cipta. Ahmetoglu, E., Acar, I. H., & Ozturk, M. A. (2022). Parental involvement and children’s peer interactions. Current Psychology, 41(7), 4447–4456. https://doi.org/10.1007/s12144-020-00965-0. Andhika, M. R. (2021). Peran Orang Tua Sebagai Sumber Pendidikan Karakter Bagi Anak Usia Dini. At-Ta’Dib: Jurnal Ilmiah Prodi Pendidikan Agama Islam, 13(1), 73. https://doi.org/10.47498/tadib.v13i01.466. Arthur, A. E., Bigler, R. S., Liben, L. S., Gelman, S. A., & Ruble, D. N. (2008). Gender stereotyping and prejudice in young children. In S. R. Levy & M. Killen (Eds.), Intergroup attitudes and relations in childhood through adulthood (pp. 66–86). New York, NY: Oxford University Press. Aydin, G., Margerison, C., Worsley, A., & Booth, A. (2021). Parents’ and teachers’ views of the promotion of healthy eating in Australian primary schools. BMC Public Health, 21(1), 1–12. https://doi.org/10.1186/s12889-021-11813-6. Baumard, N., Mascaro, O., & Chevallier, C. (2012). Preschoolers Are Able to Take Merit into Account When Distributing Goods. 48(2), 492–498. https://doi.org/10.1037/a0026598. Benozio, A., & Diesendruck, G. (2015). Parochialism in preschool boys ’ resource allocation. Evolution and Human Behavior, 36(4), 256–264. https://doi.org/10.1016/j.evolhumbehav.2014.12.002. Berthelot, N., Lemieux, R., Garon-Bissonnette, J., Lacharité, C., & Muzik, M. (2019). The protective role of mentalizing: Reflective functioning as a mediator between child maltreatment, psychopathology and parental attitude in expecting parents. Child Abuse and Neglect, 95(April). https://doi.org/10.1016/j.chiabu.2019.104065. Bigler, R. S., & Liben, L. S. (2006). A Developmental Intergroup Theory Of Social Stereotypes And Prejudice. Advances in Child Development and Behavior, 16, 162–166. https://doi.org/https://doi.org/10. 1111/j.1467-8721.2007.00496.x. Bigler, R. S., & Liben, L. S. (2007). Developmental Intergroup Theory: Explaining and reducing children’s social stereotyping and prejudice. Association for Psychological Science, 16(3), 162–166. https://doi.org/https://doi.org/10. 1111/j.1467-8721.2007.00496.x. Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and Psychopathology, 20(3), 899–911. https://doi.org/10.1017/S0954579408000436. Chacko, A., Jensen, S. A., Lowry, L. S., Cornwell, M., Chimklis, A., Chan, E., Lee, D., & Pulgarin, B. (2016). Engagement in Behavioral Parent Training: Review of the Literature and Implications for Practice. Clinical Child and Family Psychology Review, 19(3), 204–215. https://doi.org/10.1007/s10567-016-0205-2 Cheal, D. J. (1988). In Intergenerational Transfers. Int’l. J. Aging And Human Development, 26(4), 261–273. https://doi.org/10.2190/V2E8-UEAT-5MJ7-UQ6F. Chernyak, N., & Kushnir, T. (2013). Giving Preschoolers Choice Increases Sharing Behavior. Psychological Science, 24(10), 1971–1979. https://doi.org/10.1177/0956797613482335. Coleman, M., Ganong, L. H., Hans, J. D., Sharp, E. A., & Rothrauff, T. C. (2005). Filial Obligations in Post-Divorce Stepfamilies Filial Obligations in Post-Divorce Stepfamilies. Journal of Divorce & Remarriage, 43(3/4), 37–41. https://doi.org/10.1300/J087v43n03. Cvencek, D., & Meltzoff, A. N. (2015). Developing Implicit Social Cognition In Early Childhood : Methods, phenomena, prospects. The Routledge International Handbook of Young Children’s Thinking and Understanding, 43–53. https://www.researchgate.net/publication/343658204_4_Developing_implicit_social_cognition_in_early_childhood_Methods_phenomena_prospects. Davis-Kean, P. E., Tighe, L. A., & Waters, N. E. (2021). The Role of Parent Educational Attainment in Parenting and Children’s Development. Current Directions in Psychological Science, 30(2), 186–192. https://doi.org/10.1177/0963721421993116. Damon, W. (1977). The social world of the child. San Francisco, CA: Jossey-Bass. Dunfield, K. A., Kuhlmeier, V. A., & Murphy, L. (2013). Children ’ s Use of Communicative Intent in the Selection of Cooperative Partners. PLoS ONE, 8(4), 1–6. https://doi.org/10.1371/journal.pone.0061804. Eagly, A. H., & Wood, W. (2017). Social Role Theory (Issue January 2012). https://doi.org/10.4135/9781446249222.n49. Fadillah, M. (2012). Desain Pembelajaran PAUD Tinjauan Teoritik & Praktik. Ar-Ruzz Media. Fan, R., Ruoyu, L., Chang, G., Yongling, H., Haiyan, H., Chunyan, P., Xinzhu, W., & Yuhui, W. (2022). Association of mothers’ adverse childhood experiences and parenting styles with emotional behavior problems in preschool children. Sch. Health China, 43(8), 1134–1138. https://doi.org/10.16835/j.cnki.1000-9817.2022.08.004. Fardiansyah, H. (2022). Manajemen Pendidikan (Tinjaun Pada Pendidikan Formal). Bandung: Widina Media Utama. Feng, L., Zhang, L., & Zhong, H. (2021). Perceived parenting styles and mental health: The multiple mediation effect of perfectionism and altruistic behavior. Psychology Research and Behavior Management, 14, 1157–1170. https://doi.org/10.2147/PRBM.S318446. Fikriyah, S., Mayasari, A., Ulfah, U., & Arifudin, O. (2022). Peran Orang Tua Terhadap Pembentukan Karakter Anak Dalam Menyikapi Bullying. Jurnal Tahsinia, 3(1), 11–19. https://doi.org/10.57171/jt.v3i1.306. Finch, J. (1989). Family Obligations and Social Change. Cambridge: Polity Press. Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2002). A Model of ( Often Mixed ) Stereotype Content : Competence and Warmth Respectively Follow From Perceived Status and Competition. Of Personality and Social Psychology, 82(6), 878–902. https://doi.org/10.1037//0022-3514.82.6.878. Florean, I. S., Dobrean, A., Păsărelu, C. R., Georgescu, R. D., & Milea, I. (2020). The Efficacy of Internet-Based Parenting Programs for Children and Adolescents with Behavior Problems: A Meta-Analysis of Randomized Clinical Trials. Clinical Child and Family Psychology Review, 23(4), 510–528. https://doi.org/10.1007/s10567-020-00326-0. Ganong, L., & Coleman, M. (2006). Patterns of exchange and intergenerational responsibilities after divorce and remarriage. Journal of Aging Studies, 20, 265–278. https://doi.org/10.1016/j.jaging.2005.09.005. Hapsari, D. I., Dewi, R. R. K., & Selviana. (2019). Determinan Kejadian Stunting Pada Balita Di Wilayah 3T (Tertinggal , Terdepan, dan Terluar). Jurnal Publikasi Kesehatan Masyarakat Indonesia, 6(2), 72–78. https://doi.org/10.20527/jpkmi.v6i2.7456. Hartman, K. M., Ratner, N. B., & Newman, R. S. (2016). Infant-directed speech ( IDS ) vowel clarity and child language outcomes *. Child. Lang, 44, 1140–1162. https://doi.org/10.1017/S0305000916000520. Hofmann, V., & Müller, C. M. (2021). Learning , Culture and Social Interaction Language skills and social contact among students with intellectual disabilities in special needs schools. Learning, Culture and Social Interaction, 30(PA), 100534. https://doi.org/10.1016/j.lcsi.2021.100534. Houdt, K. Van, Kalmijn, M., & Ivanova, K. (2018). Family Complexity and Adult Children ’ s Obligations : The Role of Divorce and Co-Residential History in Norms to Support Parents and Step-Parents. European Sociological Review, 34(2), 169–183. https://doi.org/10.1093/esr/jcy007. House, B. R., Silk, J. B., Henrich, J., Barrett, H. C., Scelza, B. A., Boyette, A. H., Hewlett, B. S., Mcelreath, R., & Laurence, S. (2013). Ontogeny of prosocial behavior across diverse societies. Proceedings of the National Academy of Sciences, 110(36), 14586–14591. https://doi.org/https://doi.org/10.1073/pnas.1221217110. Irma, C. N., Nisa, K., & Sururiyah, S. K. (2019). Keterlibatan Orang Tua dalam Pendidikan Anak Usia Dini di TK Masyithoh 1 Purworejo. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 3(1), 214. https://doi.org/10.31004/obsesi.v3i1.152. Jackson, L. A., Witt, E. A., Fitzgerald, H. E., VonEye, A., & Zhao, Y. (2011). Perceptions of parent behavior and children’s information technology use. In T. Bastiaens, & M. Ebner (Eds.). Proceedings of ED-MEDIA 2011–World Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 3864–3869). Lisbon, Portugal: Association for the Advancement of Computing in Education (AACE). Jatiningsih, O., Habibah, S. M., Wijaya, R., & Sari, M. M. K. (2021). Peran Orang Tua Dalam Pemenuhan Hak Pendidikan Anak Pada Masa Belajar Dari Rumah. Jurnal Ilmu Sosial Dan Humaniora, 10(1), 147. https://doi.org/10.23887/jish-undiksha.v10i1.29943. Jeon, H. J., Peterson, C. A., Luze, G., Carta, J. J., & Clawson Langill, C. (2020). Associations between parental involvement and school readiness for children enrolled in Head Start and other early education programs. Children and Youth Services Review, 118(April), 105353. https://doi.org/10.1016/j.childyouth.2020.105353. Juniarti, Y., & Nurlaeni. (2017). Peran Orang Tua Dalam Mengembangkan Kemampuan Bahasa Pada Anak Usia 4-6 Tahun. Jurnal Pelita PAUD, 2(1), 51–62. https://doi.org/https://doi.org/10.33222/pelitapaud.v2i1.196. Kanngiesser, P., & Warneken, F. (2012). Young Children Consider Merit when Sharing Resources with Others. PLoS ONE, 7(8), 1–5. https://doi.org/10.1371/journal.pone.0043979. Kienbaum, J., & Wilkening, F. (2009). European Journal of Children ’ s and adolescents ’ intuitive judgements about distributive justice : Integrating need , effort , and luck. European Journal of Developmental Psychology, 6(4), 481–498.https://doi.org/10.1080/17405620701497299. Koenig, A. M., & Eagly, A. H. (2014). Evidence for the Social Role Theory of Stereotype Content : Observations of Groups ’ Roles Shape Stereotypes. Journal of Personality and Social Psychology, 107(3), 371–392. https://doi.org/10.1037/a0037215. Latifa, U. (2017). Perkembangan pada Anak Sekolah Dasar: Masalah dan Perkembangannya. Academica: Journal of Multidisciplinary Studies, 1(2), 185–196. https://ejournal.uinsaid.ac.id/index.php/academica/article/download/1052/297. Lee, E. J., & Sun, H. (2018). Gender Differences in Smartphone Addiction Behaviors Associated With Parent Y Child Bonding , Parent Y Child Communication , and Parental Mediation Among Korean Elementary School Students. Journal of Addictions Nursing, 29(4), 244–254. https://doi.org/10.1097/JAN.0000000000000254. Lilawati, A. (2020). Peran Orang Tua dalam Mendukung Kegiatan Pembelajaran di Rumah pada Masa Pandemi. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 5(1), 549. https://doi.org/10.31004/obsesi.v5i1.630. Lin, X., Liao, Y., & Li, H. (2022). Parenting Styles and Social Competence in Chinese Preschoolers: A Moderated Mediation Model of Singleton and Self-regulation. Early Education and Development, 33(3), 437–451. https://doi.org/10.1080/10409289.2021.1940643. Maifani. (2016). Peranan Orang Tua dalam Pembentukan Karakter Anak Sejak Dini di Desa Lampoh Tarom Kecamatan Kuta Baro Kabupaten Aceh Besar. Aceh: UIN Ar-Raniry Banda Aceh. Malti, T., Gummerum, M., Ongley, S., Chaparro, M., Nola, M., & Bae, N. Y. (2016). ‘“ Who is worthy of my generosity ?”’ Recipient characteristics and the development of children ’ s sharing. International Journal of Behavioral Development, 40(1), 31–40. https://doi.org/10.1177/0165025414567007. Martin, C. L., & Ruble, D. (2004). Current Directions in Psychological Science Children ’ s Search for Gender Cues Cognitive Perspectives on Gender Development. Current Directions in Psychological Science, 13(2), 67–70. https://doi.org/10.1111/j.0963-7214.2004.00276.x. Morgan, G., Curtin, M., & Botting, N. (2021). Infant Behavior and Development The interplay between early social interaction , language and executive function development in deaf and hearing infants. Infant Behavior and Development, 64(June), 101591. https://doi.org/10.1016/j.infbeh.2021.101591. Niu, G., Chai, H., Li, Z., Wu, L., & Sun, X. (2019). Online Parent-Child Communication and Left-Behind Children ’ s Subjective Well-Being : the Effects of Parent-Child Relationship and Gratitude. Child Indicators Research, 13(6). https://doi.org/https://doi.org/10.1007/s12187-019-09657-z. Ong, M. Y., Eilander, J., Saw, S. M., Xie, Y., Meaney, M. J., & Broekman, B. F. P. (2018). The influence of perceived parenting styles on socio-emotional development from pre-puberty into puberty. European Child and Adolescent Psychiatry, 27(1), 37–46. https://doi.org/10.1007/s00787-017-1016-9. Paulus, M. (2014). The early origins of human charity : developmental changes in preschoolers ’ sharing with poor and wealthy individuals. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.00344. Piotrowska, P. J., Tully, L. A., Lenroot, R., Kimonis, E., Hawes, D., Moul, C., Frick, P. J., Anderson, V., & Dadds, M. R. (2017). Mothers, Fathers, and Parental Systems: A Conceptual Model of Parental Engagement in Programmes for Child Mental Health—Connect, Attend, Participate, Enact (CAPE). Clinical Child and Family Psychology Review, 20(2), 146–161. https://doi.org/10.1007/s10567-016-0219-9. Popov, L. M., & Ilesanmi, R. A. (2015). Parent-Child Relationship : Peculiarities and Outcome. Review of European Studies, 7(5), 21–27. https://doi.org/10.5539/res.v7n5p253. Prabhawani, S. W. (2016). Pelibatan Orang Tua dalam Program Sekolah di TK Khalifah. Pendidikan Guru PAUD S-1, 5(2), 205–218. http://journal.student.uny.ac.id/ojs/index.php/pgpaud/article/view/1217. Procentese, F., Gatti, F., & Di Napoli, I. (2019). Families and social media use: The role of parents’ perceptions about social media impact on family systems in the relationship between family collective efficacy and open communication. International Journal of Environmental Research and Public Health, 16(24). https://doi.org/10.3390/ijerph16245006. Ratiwi, R. D., & Sumarni, W. (2020). Peran Orang Tua Dalam Pendampingan Belajar Daring. Cetta: Jurnal Ilmu Pendidikan,3(ISSN: 2686 6404), 304–309. https://proceeding.unnes.ac.id/index.php/snpasca/article/view/600/518. Rizzo, M. T., Elenbaas, L., Cooley, S., & Killen, M. (2016). Children’s Recognition of Fairness and Others’ Welfare in a Resource Allocation Task: Age Related Changes. Developmental Psychology, 52(8), 1307–1317. https://doi.org/https://doi.org/10.1037/dev0000134. Rossi, P. H. and Rossi, A. S. (1990). Of Human Bonding: Parent-Child Relations across the Life Course. New York: Aldine de Gruyter. Ruli, E. (2020). Tugas Dan Peran Orang Tua Dalam Mendidk Anak. Jurnal Edukasi Nonformal, vol.1(No.1), hlm.145. https://ummaspul.e-journal.id/JENFOL/article/view/428. Sabani, F. (2019). Perkembangan Anak - Anak Selama Masa Sekolah Dasar (6 - 7 Tahun). Didakta: Jurnal Kependidikan, 8(2), 89–100. https://doi.org/https://doi.org/10.58230/27454312.71. Salwiah, S., & Asmuddin, A. (2022). Membentuk Karakter Anak Usia Dini melalui Peran Orang Tua. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 6(4), 2929–2935. https://doi.org/10.31004/obsesi.v6i4.1945. Schmidt, M. F. H., & Sommerville, J. A. (2011). Fairness Expectations and Altruistic Sharing in 15-Month-Old Human Infants. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0023223. Scott-phillips, T. C. (2016). Pragmatics and the aims of language evolution. Psychonomic Bulletin & Review, 24(2), 186–189. https://doi.org/10.3758/s13423-016-1061-2. Shaw, A., Descioli, P., & Olson, K. R. (2012). Fairness versus favoritism in children ☆. Evolution and Human Behavior, 33(6), 736–745. https://doi.org/10.1016/j.evolhumbehav.2012.06.001. Shutts, K., Brey, E. L., Dornbusch, L. A., & Slywotzky, N. (2016). Children Use Wealth Cues to Evaluate Others. PLoS ONE, 11(3), 1–21. https://doi.org/10.1371/journal.pone.0149360. Smetana, J. G., & Rote, W. M. (2019). Adolescent – Parent Relationships : Progress , Processes , and Prospects. Annual Review of Developmental Psychology, 1, 41–68. https://doi.org/https://doi.org/10.1146/annurev-devpsych-121318-084903. Smith, C. E., Blake, P. R., & Harris, P. L. (2013). I Should but I Won ’ t : Why Young Children Endorse Norms of Fair Sharing but Do Not Follow Them. 8(3). https://doi.org/10.1371/journal.pone.0059510. Spilt, J. L., & Harrison, L. J. (2015). Language Development in the Early School Years : The Importance of Close Relationships With Teachers. Developmental Psychology, 51(2), 185–196. https://doi.org/10.1037/a0038540. Sri Asri, A. (2018). Hubungan Pola Asuh Terhadap Perkembangan Anak Usia Dini. Jurnal Ilmiah Sekolah Dasar, 2(1), 1. https://doi.org/10.23887/jisd.v2i1.13793. Stein, C. H., Wemmerus, V. A., Ward, M., Gaines, M. E., Freeberg, A. L., Jewell, T. C., Ward, M., Gaines, M. E., Freeberg, A. L., & Jewell, T. C. (1998). “Because They’re My Parents”: An Intergenerational Study of Felt Obligation and Parental Caregiving. Journal of Marriage and the Fam, 60(3), 611–622. https://doi.org/https://doi.org/10.2307/353532. Sugiyanto, W. P. (2015). Pengaruh Pola Asuh Orang Tua Terhadap Perilaku Prososial Siswa Kelas V Sd Se Gugus Ii Kecamatan Pengasih Kabupaten Kulon Progo Tahun Ajaran 2014/2015. Pendidikan Guru Sekolah Dasar, 15(4), 1–27. https://doi.org/10.31004/aulad.v3i1.53. Syahailatua, J., & Kartini, K. (2020). Pengetahuan ibu tentang tumbuh kembang berhubungan dengan perkembangan anak usia 1-3 tahun. Jurnal Biomedika Dan Kesehatan, 3(2), 77–83. https://doi.org/10.18051/jbiomedkes.2020.v3.77-83. Talango, S. R. (2020). Konsep Perkembangan Anak Usia Dini. Early Childhood Islamic Education Journal, 1(1), 92–105. https://doi.org/10.54045/ecie.v1i1.35. Taubah, M. (2016). Pendidikan Anak Dalam Keluarga Perspektif Islam Mufatihatut Taubah (Dosen STAIN Kudus Prodi PAI). JUrnal Pendidikan Agama Islam, 3(1), 109–136. https://doi.org/https://doi.org/10.15642/jpai.2015.3.1.109-136. Tocaimaza-Hatch, C. C., & Santo, J. (2020). Social interaction in the Spanish classroom : How proficiency and linguistic background impact vocabulary learning. Language Teaching Research, 27(5), 1–25. https://doi.org/10.1177/1362168820971468. Triandis, H. C. (2001). Individualism-Collectivism and Personality. Journal of Personality, 69(6), 907–924. https://doi.org/https://doi. org/10.1111/1467-6494.696169. Vieira, J. M., Matias, M., Ferreira, T., Lopez, F. G., & Matos, P. M. (2016). Parents ’ Work-Family Experiences and Children ’ s Problem Behaviors : The Mediating Role of the Parent – Child Relationship. Journal of Family Psychology, 30(4), 419–430. https://doi.org/http://dx.doi.org/10.1037/fam0000189. Wahidin. (2019). Peran Orang Tua Dalam Menumbuhkan Motivasi Belajar Anak Sekolah Dasar. Pancar, 3(1), 232–245. https://ejournal.unugha.ac.id/index.php/pancar/article/view/291. Wang, M., Wang, J., Deng, X., & Chen, W. (2019). Why are empathic children more liked by peers? The mediating roles of prosocial and aggressive behaviors. Personality and Individual Differences, 144(September 2018), 19–23. https://doi.org/10.1016/j.paid.2019.02.029. Wiresti, R. D., & Na’imah, N. (2020). Aspek Perkembangan Anak : Urgensitas Ditinjau dalam Paradigma Psikologi Perkembangan Anak. Aulad : Journal on Early Childhood, 3(1), 36–44. https://doi.org/10.31004/aulad.v3i1.53. Wood, W., & Eagly, A. H. (2012). Biosocial Construction of Sex Differences and Similarities in Behavior. In Advances in Experimental Social Psychology (1st ed., Vol. 46). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394281-4.00002-7. Xia, X. (2023). Parenting style and Chinese preschool children’s pre-academic skills: A moderated mediation model of approaches to learning and family socioeconomic status. Frontiers in Psychology, 14(February), 1–9. https://doi.org/10.3389/fpsyg.2023.1089386. Xie, X., Chen, W., Zhu, X., & He, D. (2019). Parents’ phubbing increases Adolescents’ Mobile phone addiction: Roles of parent-child attachment, deviant peers, and gender. Children and Youth Services Review, 105(April), 104426. https://doi.org/10.1016/j.childyouth.2019.104426. Xie, Y., Shi, Z., Yin, L., & Lan, L. (2022). A Meta-Analysis of the Relationships between Chinese Parenting Styles and Child Academic Achievement. Best Evidence in Chinese Education, 12(1), 1589–1595. https://doi.org/10.15354/bece.22.ab009. Yang, N., Shi, J., Lu, J., & Huang, Y. (2021). Language Development in Early Childhood : Quality of Teacher-Child Interaction and Children ’ s Receptive Vocabulary Competency. Frontiers in Psychology, 12(July), 1–12. https://doi.org/10.3389/fpsyg.2021.649680. Zhang, W., Yu, G., Fu, W., & Li, R. (2022). Parental Psychological Control and Children’s Prosocial Behavior: The Mediating Role of Social Anxiety and the Moderating Role of Socioeconomic Status. International Journal of Environmental Research and Public Health, 19(18). https://doi.org/10.3390/ijerph191811691.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lee, Yueh-Ting, Honggany Yang y Min Wang. "Daoist Harmony as a Chinese Philosophy and Psychology". Peace and Conflict Studies, 2009. http://dx.doi.org/10.46743/1082-7307/2009.1103.

Texto completo
Resumen
Based on Lee’s prior research on Daoism (Lee, 2003; Lee, 2004; Lee, Han, Byron and Fan, 2008; Lee and Hu, 1993; Lee, Norasakkunkit, Liu, Zhang and Zhou, 2008), this article first introduces Laozi, Dao, De and Daoism in relation to harmony. Then, Daoist harmony is elaborated in the following areas: (1) the yin-yang oneness, (2) the way it is (natural), (3) wei-wu-wei (or nonintervention), (4) water-like characteristics, (5) love for peace, and (6) tolerance and appreciation of differences. The article concludes with a suggestion for harmony with the external world as well as with fellow human beings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hong Son, Bui, Vu Van Nga, Le Thi Diem Hong y Do Thi Quynh. "Potent Natural Inhibitors of Alpha-Glucosidase and the Application of Aspergillus spp. in Diabetes type 2 Drugs: a Review". VNU Journal of Science: Medical and Pharmaceutical Sciences 38, n.º 1 (24 de marzo de 2022). http://dx.doi.org/10.25073/2588-1132/vnumps.4334.

Texto completo
Resumen
Diabetes Mellitus has been becoming a disease of the century, and disease incidence is still rising worldwide. It causes many serious complications, especially in the eye, heart, kidneys, brain, and vascular system, such as diabetic nephropathy, diabetic retinopathy, liver fa­ilure, etc. Moreover, the process of controlling this disease is complicated. Meanwhile, the antidiabetic drugs on the market are facing some problems with a wide range of adverse reactions. Therefore, finding new drugs to treat diabetes has always been a topic that many researchers are interested in, especially drugs derived from nature like microorganisms and medicinal plants. This review is to provide knowledge concerning the effects of α-glucosidase inhibitors, which are oral antidiabetic drugs commonly used for diabetes mellitus type 2. Besides, we show readers the variety of active ingredients originating from nature, particularly the secondary metabolites of Aspergillus spp., which have many applications in the chemical and medicinal industry. Keywords: Diabetes, α-glucosidase inhibitors, Aspergillus. References [1] W. H. Organization, Classification of Diabetes Mellitus, https://www.who.int/westernpacific/health-topics/diabetes (accessed on: May 11th, 2021).[2] J. Thrasher, Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies, Am J Cardiol, Vol. 120, No. 1, 2017, pp. S4-S16, https://doi.org/10.1016/j.amjcard.2017.05.009.[3] W. Hakamata, M. Kurihara, H. Okuda, T. Nishio, T. Oku, Design and Screening Strategies for Alpha-glucosidase Inhibitors Based on Enzymological Information, Curr Top Med Chem, Vol. 9, No. 1, 2009, pp. 3-12, https://doi.org/10.2174/156802609787354306.[4] US, Patent Version Number: US4062950A, Amino Sugar Derivatives, https://patents.google.com/patent/US4062950A/en(accessed on: May 11th, 2021).[5] A. S. Dabhi, N. R. Bhatt, M. J. Shah, Voglibose: an Alpha- glucosidase Inhibitor, J Clin Diagn Res, Vol. 7, No. 12, 2013, pp. 3023-3027, https://doi.org/10.7860/JCDR/2013/6373.3838.[6] P. Durruty, M. Sanzana, L. Sanhueza, Pathogenesis of Type 2 Diabetes Mellitus, Type 2 Diabetes - from Pathophysiology to Modern Management, Intechopen, United Kingdom, 2019, pp. 1-18.[7] L. N. Khue, T. H. Dang, T. H. Quang, N. T. Khue et al., Guidelines for Diagnosis and Treatment of Diabetes Type 2, Ministry of Health, Vietnam, 2021 (in Vietnamese).[8] M. Okuyama, W. Saburi, H. Mori, A. Kimura, Alpha-Glucosidases and Alpha-1,4-Glucan Lyases: Structures, Functions, and Physiological Actions, Cell Mol Life Sci, Vol. 73, 2016, pp. 2727-2751, https://doi.org/10.1007/s00018-016-2247-5.[9] V. L. Yip, S. G. Withers, Nature's Many Mechanisms for The Degradation of Oligosaccharides, Org Biomol Chem, Vol. 19, No. 2, 2004, pp. 2707-2713, https://doi.org/10.1039/B408880H.[10] B. Henrissat, A. Bairoch, New Families in The Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities, Biochem J, Vol. 293, No. 3, 1993, pp. 781-788, https://doi.org/10.1042/bj2930781.[11] B. Henrissat, A Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities, Biochem J, Vol. 280, No. 2, 1991, pp. 309-316, https://doi.org/10.1042/bj2800309.[12] R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, B. Chauhan, Microbial A-amylases: A Biotechnological Perspective, Process Biochemistry, Vol. 38, No. 11, 2003, pp. 1599-1616, https://doi.org/10.1016/s0032-9592(03)00053-0.[13] C. V. D. Maarel, B. V. D. Veen, J. C .M. Uitdehaag, H. Leemhuis, L. Dijkhuizen, Properties and Applications of Starch-Converting Enzymes of The A-Amylase Family, Journal of Biotechnology, Vol. 94, No. 2, 2002, pp. 137-155, https://doi.org/10.1016/s0168-1656(01)00407-2.[14] N. R. Kim, D. W. Jeong, D. S. Ko, J. H. Shim, Characterization of Novel Thermophilic Alpha-Glucosidase from Bifidobacterium Longum, Int J Biol Macromol, Vol. 99, 2017, pp. 594-599, https://doi.org/10.1016/j.ijbiomac.2017.03.009.[15] D. R. Rose, M. M. Chaudet, K. Jones, Structural Studies of The Intestinal Alpha-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase, J Pediatr Gastroenterol Nutr, Vol. 66, No. 3, 2018, pp. S11-S13, https://doi.org/10.1097/MPG.0000000000001953.[16] L. Ren, X. Qin, X. Cao, L. Wang, F. Bai, G. Bai, Y. Shen, Structural Insight into Substrate Specificity of Human Intestinal Maltase-Glucoamylase, Protein Cell, Vol. 2, 2011, pp. 827-836, https://doi.org/10.1007/s13238-011-1105-3.[17] L. Sim, C. Willemsma, S. Mohan, H. Y. Naim, B. M. Pinto, D. R. Rose, Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-Terminal Domains, J Biol Chem, Vol. 285, No. 23, 2010, pp. 17763-17770, https://doi.org/10.1074/jbc.M109.078980.[18] K. Jones, L. Sim, S. Mohan, J. Kumarasamy,H. Liu, S. Avery, H. Y. Naim, R. Q. Calvillo, B. L. Nichols, B. M. Pinto, D. R. Rose, Mapping The Intestinal Alpha-Glucogenic Enzyme Specificities of Starch Digesting Mal se-Glucoamylase and Sucrase-Isomaltase, Bioorg Med Chem, Vol. 19, 2011, pp. 3929-3934, https://doi.org/10.1016/j.bmc.2011.05.033.[19] P. T. T. Chau, P. T. Nghia, Enzyme and Application, Education Publisher, Vietnam, 2009.[20] Researchgate, Food Protein-Derived Bioactive Peptides in Management of Type 2 Diabetes - Scientific Figure, https://www.researchgate.net/figure/Mechanism-of-action-of-alpha-glucosidase-inhibitors_fig2_279991207 (accessed on: May 10th, 2021).[21] Z. Liu, S. Ma, Recent Advances in Synthetic Alpha-Glucosidase Inhibitors, Chem Med Chem, Vol. 12, No. 11, 2017, pp. 819-829, https://doi.org/10.1002/cmdc.201700216.[22] A. Lee, P. Patrick, J. Wishart, M. Horowitz, J. E. Morley, The Effects of Miglitol on Glucagon-Like Peptide-1 Secretion And Appetite Sensations in Obese Type 2 Diabetics, Diabetes Obes Metab, Vol. 4, No. 5, 2002, pp. 329-335, https://doi.org/10.1046/j.14631326.2002.00219.x.[23] I. Takei, K. Miyamoto, O. Funae, N. Ohashi, S. Meguro, M. Tokui, T. Saruta, Secretion of GIP in Responders to Acarbose in Obese Type 2 (NIDDM) Patients, Journal of Diabetes and Its Complications, Vol. 15, No. 5, 2001, pp. 245-249, https://doi.org/10.1016/s1056-8727(01)00148-9.[24] X. Bian, X. Fan, C. Ke, Y. Luan, G. Zhao, A. Zeng, Synthesis and Alpha-Glucosidase Inhibitory Activity Evaluation of N-Substituted Aminomethyl-Beta-D-Glucopyranosides, Bioorg Med Chem, Vol. 21, No. 17, 2013, pp. 5442-5450, https://doi.org/10.1016/j.bmc.2013.06.002.[25] J. B. Yang, J. Y. Tian, Z. Dai, F. Ye, S. C. Ma, A. G. Wang, α-Glucosidase Inhibitors Extracted from The Roots of Polygonum Multiflorum Thunb, Fitoterapia, Vol. 117, 2017, pp. 65-70, https://doi.org/10.1016/j.fitote.2016.11.009.[26] Z. Yin, W. Zhang, F. Feng, Y. Zhang, W. Kang, α-Glucosidase Inhibitors Isolated from Medicinal Plants, Food Science and Human Wellness, Vol. 3, No.3-4, 2014, pp. 136-174, https://doi.org/10.1016/j.fshw.2014.11.003.[27] P. Qiu, Z. Liu, Y. Chen, R. Cai, G. Chen, Z. She, Secondary Metabolites with Alpha-Glucosidase Inhibitory Activity from The Mangrove Fungus Mycosphaerella sp. SYSU-DZG01, Mar Drugs, Vol. 17, No. 8, 2019, pp. 483-508, https://doi.org/10.3390/md17080483.[28] S. Munasaroh, S. R. Tamat, R. T. Dewi, Isolation and Identification of α-Glucosidase Inhibitor from Aspergillus Terreus F38, Indonesian Journal of Pharmacy, Vol. 29, No. 2, 2018, pp. 74-79, https://doi.org/10.14499/indonesianjpharm29iss2pp74.[29] R. T. Dewi, A. Suparman, H. Mulyani, P. D. N. Lotulung, Identification of A New Compound as α-Glucosidase Inhibitor from Aspergillus Aculeatus, Annales Bogorienses, Vol. 20, No. 1, 2016, pp. 19-23, https://doi.org/10.14203/ann. bogor .2016.v20.n1.19-23.[30] R. T. Dewi, S. Tachibana, A. Darmawan, Effect on α-Glucosidase Inhibition and Antioxidant Activities of Butyrolactone Derivatives from Aspergillus Terreus MC751, Medicinal Chemistry Research, Vol. 23, 2014, pp. 454-460, https://doi.org/10.1007/s00044-013-0659-4.[31] M. G. Kang, S. H. Yi, J. S. Lee, Production and Characterization of A New Alpha-Glucosidase Inhibitory Peptide from Aspergillus Oryzae N159-1, Mycobiology, Vol. 41, No. 3, 2013, pp. 149-154, https://doi.org/10.5941/MYCO.2013.41.3.149.[32] S. Onose, R. Ikeda, K. Nakagawa, T. Kimura, K. Yamagishi, O. Higuchi, T. Miyazawa, Production of The Alpha-Glycosidase Inhibitor 1-Deoxynojirimycin from Bacillus Species, Food Chem, Vol. 138, No. 1, 2013, pp. 516-523, https://doi.org/10.1016/j.foodchem.2012.11.012.[33] Y. P. Zhu, K. Yamaki, T. Yoshihashi, M. Ohnishi Kameyama, X. T. Li, Y. Q. Cheng, Y. Mori, L. T. Li, Purification and Identification of 1-Deoxynojirimycin (DNJ) in Okara Fermented by Bacillus Subtilis B2 from Chinese Traditional Food (Meitaoza), J Agric Food Chem, Vol. 58,No. 7, 2010, pp. 4097-4103, https://doi.org/10.1021/jf9032377.[34] A. Tabussum, N. Riaz, M. Saleem, M. Ashraf, M. Ahmad, U. Alam, B. Jabeen, A. Malik, A. Jabbar, α-Glucosidase Inhibitory Constituents from Chrozophora Plicata, Phytochemistry Letters, Vol. 6, No. 4. 2013, pp. 614-619, https://doi.org/10.1016/j.phytol.2013.08.005.[35] M. Yagi, T. Kouno, Y. Aoyagi, H. Murai, The Structure of Moranoline, A Piperidine Alkaloid from Morus Species, Journal of The Agricultural Chemical Society of Japan, Vol. 50, No. 11, 1976, pp. 571-572, https://doi.org/10.1271/nogeikagaku1924.50.11_571.[36] M. Hemker, A. Stratmann, K. Goeke, W. Schroder, J. Lenz, W. Piepersberg, H. Pape, Identification, Cloning, Expression, and Characterization of The Extracellular Acarbose-Modifying Glycosyltransferase, AcbD, from Actinoplanes Sp. Strain SE50, J Bacteriol, Vol. 183, No. 15, 2001, pp. 4484-4492, https://doi.org/10.1128/JB.183. 15.4484-4492.2001.[37] E. Truscheit, I. Hillebrand, B. Junge, L. Müller, W. Puls, D. Schmidt, Microbial α-Glucosidase Inhibitors: Chemistry, Biochemistry, and Therapeutic Potential, Presented at Drug Concentration Monitoring Microbial alpha-Glucosidase Inhibitors Plasminogen Activators, Springer-Verlag, Berlin, 1988.[38] Y. Kameda, N. Asano, M. Yoshikawa, M. Takeuchi, T. Yamaguchi, K. Matsui, S. Horii, H. Fukase, Valiolamine, A New Alpha-Glucosidase Inhibiting Aminocyclitol Produced by Streptomyces Hygroscopicus, J Antibiot (Tokyo), Vol. 37, No. 11, 1984, pp. 1301-1307, https://doi.org/10.7164/antibiotics.37.1301.[39] D. T. Tuyen, V. V. Hanh, V. T. T. Hang, D. K. Trinh, D. T. Quyen, Extraction and Purification of DNJ (1-Deoxynojirimycin) Inhibiting α-Glucosidase from B. Subtilis VN9 Strain Isolated from Vietnam, National Biotechnology Conference, 2013.[40] D. T. Tuyen, Optimization and Purification of α-Glucosidase Inhibitor from Bacillus Subtilis YT20 Isolated in Vietnam, Vietnam Journal of Science and Technology, Vol. 59, No. 2, 2021, pp. 179-188, https://doi.org/10.15625/2525-2518/ 59/2/14928.[41] S. E. Baker, J. W. Bennett, An Overview of the Genus Aspergillus, Aspergillus: Molecular Biology and Genomics, The Aspergilli, Taylor & Francis, United Kingdom, 2008, pp. 3-13.[42] H. C. Gugnani, Ecology and Taxonomy of Pathogenic Aspergilli, Front Biosci, Vol. 8, No. 6, 2003, pp. s346- s357, https://doi.org/10.2741/1002.[43] C. G. Shaw, The Genus Aspergillus, Science, Vol. 150, No. 3697, 1965, pp. 736-737, https://doi.org/10.1126/science.150.3697.736-a.[44] M. T. Hedayati, A. C. Pasqualotto, P. A. Warn, P. Bowyer, D. W. Denning, Aspergillus Flavus: Human Pathogen, Allergen and Mycotoxin Producer, Microbiology, Vol. 153, No. 6, 2007, pp. 1677-1692, https://doi.org/10.1099/mic.0.2007/007641-0.[45] T. R. Dagenais, N. P. Keller, Pathogenesis of Aspergillus Fumigatus in Invasive Aspergillosis, Clin Microbiol Rev, Vol. 22, No. 3, 2009, pp. 447-465, https://doi.org/10.1128/CMR.00055-08.[46] S. Amaike, N. P. Keller, Aspergillus Flavus, Annu Rev Phytopathol, Vol. 49, 2011, pp. 107-133, https://doi.org/10.1146/annurev-phyto-072910-095221.[47] J. Houbraken, R. P. De Vries, R. A. Samson, Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species, Adv Appl Microbiol, Vol. 86, 2014, pp. 199-249, https://doi.org/10.1016/B978-0-12-800262-9.00004-4.[48] E. Ichishima, Development of Enzyme Technology for Aspergillus Oryzae, A. Sojae, and A. Luchuensis, The National Microorganisms of Japan, Biosci Biotechnol Biochem, Vol. 80, No. 9, 2016, pp. 1681-1692, https://doi.org/10.1080/09168451.2016.1177445.[49] E. Schuster, N. Dunn-Coleman, J. C. Frisvad, P. W. Van Dijck, on The Safety of Aspergillus Niger-A Review, Appl Microbiol Biotechnol, Vol. 59, No. 4-5, 2002, pp. 426-435, https://doi.org/10.1007/s00253-002-1032-6.[50] J. H. Yu, N. Keller, Regulation of Secondary Metabolism in Filamentous Fungi, Annu Rev Phytopathol, Vol. 43, 2005, pp. 437-458, https://doi.org/10.1146/annurev.phyto.43.040204.140214.[51] J. F. Sanchez, A. D. Somoza, N. P. Keller, C. C. Wang, Advances in Aspergillus Secondary Metabolite Research in The Post-Genomic Era, Nat Prod Rep, Vol. 29, No. 3, 2012, pp. 351-371, https://doi.org/10.1039/c2np00084a.[52] J. W. Bennett, M. Klich, Mycotoxins, Clin Microbiol Rev, Vol. 16, 2003, pp. 497-516, https://doi.org/10.1128/cmr.16.3.497-516.2003.[53] Q. Zhou, J. K. Liao, Statins and cardiovascular Diseases: from Cholesterol Lowering to Pleiotropy, Curr Pharm Des, Vol. 15, No. 5, 2009, pp. 467-478, https://doi.org/10.2174/138161209787315684.[54] A. W. Alberts, Discovery, Biochemistry and Biology of Lovastatin, Am J Cardiol, Vol. 62, No. 15, 1988, pp. 10J-15J, https://doi.org/10.1016/0002-9149(88)90002-1.[55] H. Tomoda, Y. K. Kim, H. Nishida, R. Masuma, S. Omura, Pyripyropenes, Novel Inhibitors of Acyl-Coa: Cholesterol Acyltransferase Produced by Aspergillus Fumigatu- Production, Isolation, and Biological Properties, J Antibiot (Tokyo), Vol. 47, No. 2, 1994, pp. 148-153, https://doi.org/10.7164/antibiotics.47.148.[56] F. Pelaez, Biological Activities of Fungal Metabolites, Marcel Dekker, United Stated of America, 2004.[57] E. L. Dulaney, Penicillin Production by The Aspergillus Nidulans Group, Mycologia, Vol. 39, No. 5, 2018, pp. 582-586, https://doi.org/10.1080/00275514.1947.12017637.[58] T. T. Bladt, J. C. Frisvad, P. B. Knudsen, T. O. Larsen, Anticancer and Antifungal Compounds from Aspergillus, Penicillium and Other Filamentous Fungi, Molecules, Vol. 18, No. 9, 2013, pp. 11338-11376, https://doi.org/10.3390/molecules180911338.[59] Y. Wu, Y. Chen, X. Huang, Y. Pan, Z. Liu, T. Yan, W. Cao, Z. She, alpha-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from The Mangrove Endophytic Fungus Aspergillus Flavus QQSG-3, Mar Drugs, Vol. 16, No. 9, 2018, pp. 307-316, https://doi.org/10.3390/md16090307.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai y Bui Thanh Tung. "The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19". VNU Journal of Science: Medical and Pharmaceutical Sciences 37, n.º 3 (14 de septiembre de 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Texto completo
Resumen
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Wu dao yin lue"

1

Hsu, Chung-Jen. "Development of an indigenous Chinese personality inventory based on the principle of yin-yang and the five elements and on the ancient Chinese text "Jen wu chih"". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1148066035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Wu dao yin lue"

1

Xin, Li. Zhongguo gu dian wu yin yue yan jiu: Zhongguogudianwuyinyueyanjiu. Beijing: Zhongguo dian ying chu ban she, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zhonghua, Wen, ed. Bu san de he yin yun: He wu qi yu he zhan lue : cong zuo tian dao ming tian. Beijing: Guo fang da xue chu ban she, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wang, Bing, Peijie Wang, Wei'erjinsen y Junshuai Hao. Gong chuang shi zhan lue: Jing li ren zhan lue yu ye wu gui hua yin dao zhi nan = The executive guide to facilitating strategy : featuring the drivers model. 8a ed. Beijing: Dian zi gong ye chu ban she, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sidiwensen. Jin yin dao. 8a ed. Ning bo: Ning bo chu ban she, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yue, Tang. Zhongguo yin yue wu dao. 8a ed. Hefei Shi: Anhui jiao yu chu ban she, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

jun, Ge wen. Gui dao. Bei jing: Zhong guo fang zhi chu ban she, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Huang yin wu dao Song Gaozong. Shijiazhuang Shi: Hebei ren min chu ban she, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

shuang, Nie. Lan yue liang de wu dao. Ji nan: Shan dong you yi chu ban she, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lu, Xiaojun. "San guo yan yi" de xian dai wu du. Beijing: Zhongguo she hui ke xue chu ban she, 2015.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Escott, John. Jin yin dao: Treasure island. 8a ed. Beijing: Wai yu jiao xue yu yan jiu chu ban she, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía