Literatura académica sobre el tema "Whole brain imaging"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Whole brain imaging".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Whole brain imaging"
Jiang Tao, 江涛, 龚辉 Gong Hui, 骆清铭 Luo Qingming y 袁菁 Yuan Jing. "全脑显微光学成像". Chinese Journal of Lasers 50, n.º 3 (2023): 0307101. http://dx.doi.org/10.3788/cjl221247.
Texto completoStrack, Rita. "Whole-brain imaging with ExLLSM". Nature Methods 16, n.º 3 (27 de febrero de 2019): 217. http://dx.doi.org/10.1038/s41592-019-0336-8.
Texto completoTaranda, Julian y Sevin Turcan. "3D Whole-Brain Imaging Approaches to Study Brain Tumors". Cancers 13, n.º 8 (15 de abril de 2021): 1897. http://dx.doi.org/10.3390/cancers13081897.
Texto completoHuang, Raymond Y. y Alexander Lin. "Whole-Brain MR Spectroscopy Imaging of Brain Tumor Metabolites". Radiology 294, n.º 3 (marzo de 2020): 598–99. http://dx.doi.org/10.1148/radiol.2020192607.
Texto completoCherry, Simon R. "Functional whole-brain imaging in behaving rodents". Nature Methods 8, n.º 4 (30 de marzo de 2011): 301–3. http://dx.doi.org/10.1038/nmeth0411-301.
Texto completoVogt, Nina. "Unbiased, whole-brain imaging of neural circuits". Nature Methods 16, n.º 2 (30 de enero de 2019): 142. http://dx.doi.org/10.1038/s41592-019-0313-2.
Texto completoVogt, Nina. "Chromatic multiphoton imaging of the whole brain". Nature Methods 16, n.º 6 (30 de mayo de 2019): 459. http://dx.doi.org/10.1038/s41592-019-0444-5.
Texto completoSempeles, Susan. "Whole-Brain Mapping Enhanced by Automated Imaging". Journal of Clinical Engineering 37, n.º 2 (2012): 36–37. http://dx.doi.org/10.1097/jce.0b013e31824d8e8d.
Texto completoOffner, Thomas, Daniela Daume, Lukas Weiss, Thomas Hassenklöver y Ivan Manzini. "Whole-Brain Calcium Imaging in Larval Xenopus". Cold Spring Harbor Protocols 2020, n.º 12 (9 de octubre de 2020): pdb.prot106815. http://dx.doi.org/10.1101/pdb.prot106815.
Texto completoHall, Håkan, Yasmin Hurd, Stefan Pauli, Christer Halldin y Göran Sedvall. "Human brain imaging post-mortem - whole hemisphere technologies". International Review of Psychiatry 13, n.º 1 (1 de febrero de 2001): 12–17. http://dx.doi.org/10.1080/09540260020024141.
Texto completoTesis sobre el tema "Whole brain imaging"
Riemer, F. "Quantitative whole brain sodium (²³Na) imaging". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469279/.
Texto completoKrishnan, Nitya. "Multispectral segmentation of whole brain MRI". Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3753.
Texto completoTitle from document title page. Document formatted into pages; contains vii, 89 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-59).
Li, Jennifer Mengbo. "Identification of an Operant Learning Circuit by Whole Brain Functional Imaging in Larval Zebrafish". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:11032.
Texto completoHorwood, Linda. "The magnetic resonance imaging-based assessment of whole-brain structural integrity in temporal lobe epilepsy". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21935.
Texto completoDans l'épilepsie du lobe temporal (ELT), la lésion la plus commune est une sclérose de l'hippocampe ipsilatérale au foyer épileptique. L'imagerie par résonance magnétique (IRM) permet l'évaluation in vivo des anomalies dans le cerveau des patients. Cette thèse présente l'application des techniques avancées de traitement d'image dans une étude transversale entre des patients atteints d'ELT et des sujets sains, explorant la distribution de l'atrophie cérébrale dans l'ELT. Les méthodes incluent la segmentation automatique de la matière grise et blanche par lobe et des structures limbiques (cortex cingulaire, thalamus et insula), et la segmentation manuelle des structures mésiales du lobe temporal (hippocampe, amygdale et cortex entorhinale). Les résultats de l'IRM quantitative sont évalués en relation avec des paramètres cliniques (durée de la maladie, histoire des convulsions fébriles, crises tonique-cloniques généralisées, résultats postopératoires). Les résultats démontrent des réductions de volume à proximité et à distance du foyer épileptique, incluant notamment les structures limbiques. Les résultats indiquent également un effet négatif lié à l'atrophie de l'hippocampe et un foyer épileptique dans l'hémisphère gauche sur l'intégrité structurale du cerveau dans l'ELT.
Wang, Xue. "An Integrated Multi-modal Registration Technique for Medical Imaging". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3512.
Texto completoStevner, Angus Bror Andersen. "Whole-brain spatiotemporal characteristics of functional connectivity in transitions between wakefulness and sleep". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3ef218c0-a734-4d6f-abf8-ffdb780525aa.
Texto completoCurtis, James. "Whole Brain Isotropic Arterial Spin Labeling Magnetic Resonance Imaging in a transgenic mouse model of Alzheimer's Disease". Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32516.
Texto completoCette thèse présente la conception et la validation d'un nouveau séquence d'acquisition d'imagerie par resonance magnetique (IRM) pour la marquage des spins des arteres (ASL) pour créer des cartes parametrique en trois-dimensions de debit de sanguin cérébral (CBF) dans les souris à 7 Tesla. avec un résolution isotrope de 281 μm. Les volumes d'IRM anatomique et ASL ont été enregistrées avec un procedure non linéaire pour effectuer des comparaisons de CBF par-voxel entre les scans seriale et entre les animaux. La technique a été appliquée à l'étude d'un modèle de souris transgénique de la maladie d'Alzheimer (MA), qui démontre beaucoup de traits caractéristiques de dysfonctionnement cérébral qui sont présents dans la maladie d'Alzheimer. La technique résolu régions de différence significative entre les populations transgéniques et de type sauvage par les methodes d'analyse par-voxel et par-regions-d'intérêt. Ces résultats sont les premiers à démontrer l'utilité de l'IRM de perfusion au niveau de la population sur l'analyse de physiopathologie vasculaire cérébral dans les souris transgéniques MA.
Dragomir, Elena I. [Verfasser] y Ruben [Akademischer Betreuer] Portugues. "Perceptual decision making in larval zebrafish revealed by whole-brain imaging / Elena I. Dragomir ; Betreuer: Ruben Portugues". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1214593232/34.
Texto completoIreland, Kirsty Anne. "Development of whole brain organotypic slice culture to investigate in vitro seeding of amyloid plaques". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28707.
Texto completoWolf, Sébastien. "The neural substrate of goal-directed locomotion in zebrafish and whole-brain functional imaging with two-photon light-sheet microscopy". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066468/document.
Texto completoThe first part of this thesis presents an historical overview of neural recording techniques, followed by a study on the development of a new imaging method for zebrafish neural recording: two-photon light sheet microscopy. Combining the advantages of two-photon point scanning microscopy and light sheet techniques, the two-photon light sheet microscope warrants a high acquisition speed with low photodamage and allows to circumvent the main limitation of one-photon light sheet microscopy: the disturbance of the visual system. The second part of the thesis is focused on goal-directed navigation in zebrafish larvae. After an exhaustive review on chemotaxis, phototaxis and thermotaxis in various animal models, we report a study that reveals the neural computation underlying phototaxis in zebrafish. Combining virtual-reality behavioral assays, volumetric calcium recordings, optogenetic stimulation, and circuit modeling, this work shows that a self-oscillating hindbrain population called the hindbrain oscillator (HBO) acts as a pacemaker for ocular saccades, controls the orientation of successive swim-bouts during zebrafish larva navigation, and is responsive to light in a state-dependent manner such that its response to visual inputs varies with the motor context. This peculiar response to visual inputs biases the fish trajectory towards brighter regions (phototaxis). The third part provides a discussion on the neural basis of ocular saccades in vertebrates. We conclude with some recent preliminary results on heat perception in zebrafish suggesting that the same hindbrain circuit may be at play in thermotaxis as well
Libros sobre el tema "Whole brain imaging"
Cohen-Inbar, Or, Daniel M. Trifiletti y Jason P. Sheehan. Stereotatic Radiosurgery and Microsurgery for Brain Metastases. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190696696.003.0024.
Texto completoBoedhoe, Premika S. W. y Odile A. van den Heuvel. The Structure of the OCD Brain. Editado por Christopher Pittenger. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228163.003.0023.
Texto completoHillmer, Ansel T., Kelly P. Cosgrove y Richard E. Carson. PET Brain Imaging Methodologies. Editado por Dennis S. Charney, Eric J. Nestler, Pamela Sklar y Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0009.
Texto completoGattringer, Thomas, Christian Enzinger, Stefan Ropele y Franz Fazekas. Brain imaging (CT/MRI). Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198722366.003.0007.
Texto completoSeeck, Margitta, L. Spinelli, Jean Gotman y Fernando H. Lopes da Silva. Combination of Brain Functional Imaging Techniques. Editado por Donald L. Schomer y Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0046.
Texto completoThompson, Evan. Looping Effects and the Cognitive Science of Mindfulness Meditation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190495794.003.0003.
Texto completoRubia, Katya. ADHD brain function. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198739258.003.0007.
Texto completoKleege, Georgina. Touching on Science. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190604356.003.0003.
Texto completoBodart, Olivier y Steven Laureys. Imaging the central nervous system in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0224.
Texto completoBrennan, Brian P. y Scott L. Rauch. Functional Neuroimaging Studies in Obsessive-Compulsive Disorder: Overview and Synthesis. Editado por Christopher Pittenger. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228163.003.0021.
Texto completoCapítulos de libros sobre el tema "Whole brain imaging"
Pawłowska, Monika, Marzena Stefaniuk, Diana Legutko y Leszek Kaczmarek. "Light-Sheet Microscopy for Whole-Brain Imaging". En Advanced Optical Methods for Brain Imaging, 69–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9020-2_3.
Texto completoCarass, Aaron, Muhan Shao, Xiang Li, Blake E. Dewey, Ari M. Blitz, Snehashis Roy, Dzung L. Pham, Jerry L. Prince y Lotta M. Ellingsen. "Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients". En Patch-Based Techniques in Medical Imaging, 20–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67434-6_3.
Texto completoZhou, Shuo, Christopher R. Cox y Haiping Lu. "Improving Whole-Brain Neural Decoding of fMRI with Domain Adaptation". En Machine Learning in Medical Imaging, 265–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32692-0_31.
Texto completoMuto, Mario y Alessandra D’Amico. "Radiation-Induced Leukoencephalopathy: MR Follow-Up After Whole Brain Radiation Therapy". En Imaging Gliomas After Treatment, 249–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_55.
Texto completoRen, Jian y Brett E. Bouma. "Whole Murine Brain Imaging Based on Optical Elastic Scattering". En Advances in Experimental Medicine and Biology, 109–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7627-0_6.
Texto completoZhao, Can, Aaron Carass, Junghoon Lee, Yufan He y Jerry L. Prince. "Whole Brain Segmentation and Labeling from CT Using Synthetic MR Images". En Machine Learning in Medical Imaging, 291–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_34.
Texto completoKist, Andreas M., Laura D. Knogler, Daniil A. Markov, Tugce Yildizoglu y Ruben Portugues. "Whole-Brain Imaging Using Genetically Encoded Activity Sensors in Vertebrates". En Decoding Neural Circuit Structure and Function, 321–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57363-2_13.
Texto completoSchenck, J. F., O. M. Mueller, S. P. Souza y C. L. Dumoulin. "Magnetic Resonance Imaging of Brain Iron Using A4 Tesla Whole-Body Scanner". En Iron Biominerals, 373–85. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3810-3_27.
Texto completoYan, Zhennan, Shaoting Zhang, Xiaofeng Liu, Dimitris N. Metaxas y Albert Montillo. "Accurate Whole-Brain Segmentation for Alzheimer’s Disease Combining an Adaptive Statistical Atlas and Multi-atlas". En Medical Computer Vision. Large Data in Medical Imaging, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05530-5_7.
Texto completoYan, Zhennan, Shaoting Zhang, Xiaofeng Liu, Dimitris N. Metaxas y Albert Montillo. "Accurate Whole-Brain Segmentation for Alzheimer’s Disease Combining an Adaptive Statistical Atlas and Multi-atlas". En Medical Computer Vision. Large Data in Medical Imaging, 65–73. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14104-6_7.
Texto completoActas de conferencias sobre el tema "Whole brain imaging"
Silvestri, Ludovico, Anna Letizia Allegra Mascaro, Irene Costantini, Leonardo Sacconi y Francesco S. Pavone. "Whole brain optical imaging". En SPIE BiOS, editado por Henry Hirschberg, Steen J. Madsen, E. Duco Jansen, Qingming Luo, Samarendra K. Mohanty y Nitish V. Thakor. SPIE, 2015. http://dx.doi.org/10.1117/12.2087339.
Texto completoUeda, Hiroki R. "Whole-body and whole-organ clearing and imaging with single-cell resolution". En Optics and the Brain. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/brain.2017.brw2b.2.
Texto completoUmadevi Venkataraju, Kannan U., James Gornet, Gayathri Murugaiyan, Zhuhao Wu y Pavel Osten. "Development of brain templates for whole brain atlases". En Neural Imaging and Sensing 2019, editado por Qingming Luo, Jun Ding y Ling Fu. SPIE, 2019. http://dx.doi.org/10.1117/12.2505295.
Texto completoMenzel, Miriam, Marouan Ritzkowski, David Grässel, Philipp Schlömer, Katrin Amunts y Markus Axer. "Scatterometry on whole brain sections using Scattered Light Imaging". En Optics and the Brain. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/brain.2021.btu1b.2.
Texto completoWang, C., S. Pacheco, B. K. Baggett, M. K. Chawla, D. T. Gray, U. Utzinger, C. A. Barnes y R. Liang. "Whole brain imaging with a scalable microscope". En Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw3a.30.
Texto completoEl Kanfoud, Ibtissam, Serguei Semenov, Marcella Bonazzoli, Francesca Rapetti, Richard Pasquetti, Maya de Buhan, Marie Kray et al. "Whole-microwave system modeling for brain imaging". En 2015 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2015. http://dx.doi.org/10.1109/cama.2015.7428123.
Texto completoJimenez, Anatole, Bruno Osmanski, Denis Vivien, Mickael Tanter, Thomas Gaberel y Thomas Deffieux. "Toward Whole-Brain Minimally-Invasive Vascular Imaging". En 2022 IEEE International Ultrasonics Symposium (IUS). IEEE, 2022. http://dx.doi.org/10.1109/ius54386.2022.9958460.
Texto completoLi, Wenze, Venkatakaushik Voleti, Evan Schaffer, Rebecca Vaadia, Wesley B. Grueber, Richard S. Mann y Elizabeth Hillman. "SCAPE Microscopy for High Speed, 3D Whole-Brain Imaging in Drosophila Melanogaster". En Optics and the Brain. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/brain.2016.btu4d.3.
Texto completoRynes, Mathew L., Daniel Surinach, Samantha Linn, Michael Laroque, Vijay Rajendran, Judith Dominguez, Orestes Hadjistamolou et al. "Miniaturized head-mounted device for whole cortex mesoscale imaging in freely behaving mice". En Optics and the Brain. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/brain.2021.bth2b.3.
Texto completoGornet, James, Kannan Umadevi Venkataraju, Arun Narasimhan, Nicholas Turner, Kisuk Lee, H. Sebastian Seung, Pavel Osten y Uygar Sumbul. "Reconstructing Neuronal Anatomy from Whole-Brain Images". En 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). IEEE, 2019. http://dx.doi.org/10.1109/isbi.2019.8759197.
Texto completoInformes sobre el tema "Whole brain imaging"
Brody, David L. Radiological-Pathological Correlations Following Blast-Related Traumatic Brain Injury in the Whole Human Brain Using ex Vivo Diffusion Tensor Imaging. Fort Belvoir, VA: Defense Technical Information Center, enero de 2014. http://dx.doi.org/10.21236/ada597888.
Texto completo