Artículos de revistas sobre el tema "Wheat Physiology"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Wheat Physiology.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Wheat Physiology".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Paulsen, Gary. "Application of Physiology in Wheat Breeding". Crop Science 42, n.º 6 (noviembre de 2002): 2228. http://dx.doi.org/10.2135/cropsci2002.2228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tamblyn, Christian M., Rod J. Burke y Andrew H. Cobb. "Effects of CGA245704 on wheat physiology". Pesticide Science 55, n.º 6 (junio de 1999): 676–77. http://dx.doi.org/10.1002/(sici)1096-9063(199906)55:6<676::aid-ps980>3.0.co;2-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Paulsen, Gary M. "Wheat: Ecology and Physiology of Yield Determination". Crop Science 40, n.º 4 (julio de 2000): 1186. http://dx.doi.org/10.2135/cropsci2000.0018br.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Harriman, Neil A. "Wheat. Ecology and Physiology of Yield Determination". Economic Botany 58, n.º 3 (septiembre de 2004): 502. http://dx.doi.org/10.1663/0013-0001(2004)058[0502:dfabre]2.0.co;2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fischer, R. A. "Wheat physiology: a review of recent developments". Crop and Pasture Science 62, n.º 2 (2011): 95. http://dx.doi.org/10.1071/cp10344.

Texto completo
Resumen
This review focuses on recent advances in some key areas of wheat physiology, namely phasic development, determination of potential yield and water-limited potential yield, tolerance to some other abiotic stresses (aluminium, salt, heat shock), and simulation modelling. Applications of the new knowledge to breeding and crop agronomy are emphasized. The linking of relatively simple traits like time to flowering, and aluminium and salt tolerance, in each case to a small number of genes, is being greatly facilitated by the development of molecular gene markers, and there is some progress on the functional basis of these links, and likely application in breeding. However with more complex crop features like potential yield, progress at the gene level is negligible, and even that at the level of the physiology of seemingly important component traits (e.g., grain number, grain weight, soil water extraction, sensitivity to water shortage at meiosis) is patchy and generally slow although a few more heritable traits (e.g. carbon isotope discrimination, coleoptile length) are seeing application. This is despite the advent of smart tools for molecular analysis and for phenotyping, and the move to study genetic variation in soundly-constituted populations. Exploring the functional genomics of traits has a poor record of application; while trait validation in breeding appears underinvested. Simulation modeling is helping to unravel G × E interaction for yield, and is beginning to explore genetic variation in traits in this context, but adequate validation is often lacking. Simulation modelling to project agronomic options over time is, however, more successful, and has become an essential tool, probably because less uncertainty surrounds the influence of variable water and climate on the performance of a given cultivar. It is the ever-increasing complexity we are seeing with genetic variation which remains the greatest challenge for modelling, molecular biology, and indeed physiology, as they all seek to progress yield at a rate greater than empirical breeding is achieving.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Muhammad I, Rana. "Growth Physiology of Spring Wheat Under Saline Conditions". Asian Journal of Plant Sciences 2, n.º 17 (15 de agosto de 2003): 1156–61. http://dx.doi.org/10.3923/ajps.2003.1156.1161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ionescu, Nicolae y Aurelian Penescu. "Aspects of Winter Wheat Physiology Treated with Herbicides". Agriculture and Agricultural Science Procedia 6 (2015): 52–57. http://dx.doi.org/10.1016/j.aaspro.2015.08.037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rieusset, Laura, Marjolaine Rey, Florence Wisniewski-Dyé, Claire Prigent-Combaret y Gilles Comte. "Wheat Metabolite Interferences on Fluorescent Pseudomonas Physiology Modify Wheat Metabolome through an Ecological Feedback". Metabolites 12, n.º 3 (9 de marzo de 2022): 236. http://dx.doi.org/10.3390/metabo12030236.

Texto completo
Resumen
Plant roots exude a wide variety of secondary metabolites able to attract and/or control a large diversity of microbial species. In return, among the root microbiota, some bacteria can promote plant development. Among these, Pseudomonas are known to produce a wide diversity of secondary metabolites that could have biological activity on the host plant and other soil microorganisms. We previously showed that wheat can interfere with Pseudomonas secondary metabolism production through its root metabolites. Interestingly, production of Pseudomonas bioactive metabolites, such as phloroglucinol, phenazines, pyrrolnitrin, or acyl homoserine lactones, are modified in the presence of wheat root extracts. A new cross metabolomic approach was then performed to evaluate if wheat metabolic interferences on Pseudomonas secondary metabolites production have consequences on wheat metabolome itself. Two different Pseudomonas strains were conditioned by wheat root extracts from two genotypes, leading to modification of bacterial secondary metabolites production. Bacterial cells were then inoculated on each wheat genotypes. Then, wheat root metabolomes were analyzed by untargeted metabolomic, and metabolites from the Adular genotype were characterized by molecular network. This allows us to evaluate if wheat differently recognizes the bacterial cells that have already been into contact with plants and highlights bioactive metabolites involved in wheat—Pseudomonas interaction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jat, Khyali Ram, R. N. Muralia y Arvind Kumar. "Physiology of Drought Tolerance in Wheat (Triticum aestivum L.)." Journal of Agronomy and Crop Science 167, n.º 2 (agosto de 1991): 73–80. http://dx.doi.org/10.1111/j.1439-037x.1991.tb00936.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Waines, J. G. y B. Ehdaie. "Domestication and Crop Physiology: Roots of Green-Revolution Wheat". Annals of Botany 100, n.º 5 (28 de julio de 2007): 991–98. http://dx.doi.org/10.1093/aob/mcm180.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Eisvand, H. R., S. Moori, A. Ismaili y S. Sasani. "Effects of late-season drought stress on physiology of wheat seed deterioration: changes in antioxidant enzymes and compounds". Seed Science and Technology 44, n.º 2 (30 de agosto de 2016): 327–41. http://dx.doi.org/10.15258/sst.2016.44.2.05.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Berdugo, Carlos Andres, Anne-Katrin Mahlein, Ulrike Steiner, Heinz-Wilhelm Dehne y Erich-Christian Oerke. "Sensors and imaging techniques for the assessment of the delay of wheat senescence induced by fungicides". Functional Plant Biology 40, n.º 7 (2013): 677. http://dx.doi.org/10.1071/fp12351.

Texto completo
Resumen
Near-range and remote sensing techniques are excellent alternatives to destructive methods for measuring beneficial effects of fungicides on plant physiology. Different noninvasive sensors and imaging techniques have been used and compared to measure the effects of three fungicidal compounds (bixafen, fluoxastrobin and prothioconazole) on wheat (Triticum aestivum L.) physiology under disease-free conditions in the greenhouse. Depending on the fungicidal treatment, changes in green leaf area and yield parameters were observed. Chlorophyll fluorescence of leaves was useful for measuring differences in the effective quantum yield of PSII. Reflectance measurements of wheat leaves were highly sensitive to changes in plant vitality. The spectral vegetation indices were useful for determining the differences among treatments in terms of leaf senescence, pigments and water content. The analysis of ear and leaf surface temperature was reliable for detecting effects of fungicides on plant senescence. Using nondestructive sensors, it was possible to assess a delay in senescence of wheat due to fungicide application. Furthermore, it was deduced that sensors and imaging methods are useful tools to estimate the effects of fungicides on wheat physiology. Physiological parameters measured by the sensors were actually more sensitive than yield parameters to assess the effect caused by fungicide application on wheat physiology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Peleg, Zvi, Tzion Fahima y Yehoshua Saranga. "Drought resistance in wild emmer wheat: Physiology, ecology, and genetics". Israel Journal of Plant Sciences 55, n.º 3 (1 de diciembre de 2007): 289–96. http://dx.doi.org/10.1560/ijps.55.3-4.289.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Sarwar, Nadeem, Wajid Ishaq, Ghulam Farid, Muhammad Rashid Shaheen, Muhammad Imran, Mingjian Geng y Saddam Hussain. "Zinc–cadmium interactions: Impact on wheat physiology and mineral acquisition". Ecotoxicology and Environmental Safety 122 (diciembre de 2015): 528–36. http://dx.doi.org/10.1016/j.ecoenv.2015.09.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Hasan, M. A. y J. U. Ahmed. "Kernel Growth Physiology of Wheat under Late Planting Heat Stress". Journal of the National Science Foundation of Sri Lanka 33, n.º 3 (28 de septiembre de 2005): 193. http://dx.doi.org/10.4038/jnsfsr.v33i3.2325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, Xiaojie, Chunlei Tang, Xueling Huang, Fangfang Li, Xianming Chen, Gang Zhang, Yanfei Sun, Dejun Han y Zhensheng Kang. "Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis". Journal of Experimental Botany 63, n.º 12 (13 de junio de 2012): 4571–84. http://dx.doi.org/10.1093/jxb/ers140.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Whitford, Ryan, Delphine Fleury, Jochen C. Reif, Melissa Garcia, Takashi Okada, Viktor Korzun y Peter Langridge. "Hybrid breeding in wheat: technologies to improve hybrid wheat seed production". Journal of Experimental Botany 64, n.º 18 (31 de octubre de 2013): 5411–28. http://dx.doi.org/10.1093/jxb/ert333.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ullah, Aman, Faisal Nadeem, Ahmad Nawaz, Kadambot H. M. Siddique y Muhammad Farooq. "Heat stress effects on the reproductive physiology and yield of wheat". Journal of Agronomy and Crop Science 208, n.º 1 (10 de noviembre de 2021): 1–17. http://dx.doi.org/10.1111/jac.12572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Prasad, P. V. V., S. R. Pisipati, Z. Ristic, U. Bukovnik y A. K. Fritz. "Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat". Crop Science 48, n.º 6 (noviembre de 2008): 2372–80. http://dx.doi.org/10.2135/cropsci2007.12.0717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Stallmann, J., R. Schweiger y C. Müller. "Effects of continuousversuspulsed drought stress on physiology and growth of wheat". Plant Biology 20, n.º 6 (31 de agosto de 2018): 1005–13. http://dx.doi.org/10.1111/plb.12883.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kamal, Abu Hena Mostafa, Kun Cho, Da-Eun Kim, Nobuyuki Uozumi, Keun-Yook Chung, Sang Young Lee, Jong-Soon Choi, Seong-Woo Cho, Chang-Seob Shin y Sun Hee Woo. "Changes in physiology and protein abundance in salt-stressed wheat chloroplasts". Molecular Biology Reports 39, n.º 9 (27 de junio de 2012): 9059–74. http://dx.doi.org/10.1007/s11033-012-1777-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Polley, H. "Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient". Annals of Botany 71, n.º 4 (abril de 1993): 347–56. http://dx.doi.org/10.1006/anbo.1993.1044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Bonjean, Alain P., William J. Angus y F. Sági. "The World Wheat Book: A History of Wheat Breeding". Cereal Research Communications 29, n.º 3-4 (septiembre de 2001): 459. http://dx.doi.org/10.1007/bf03543695.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Laloue, Michel y J. Eugene Fox. "Cytokinin Oxidase from Wheat". Plant Physiology 90, n.º 3 (1 de julio de 1989): 899–906. http://dx.doi.org/10.1104/pp.90.3.899.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Niewiadomska, Alicja, Leszek Majchrzak, Klaudia Borowiak, Agnieszka Wolna-Maruwka, Zyta Waraczewska, Anna Budka y Renata Gaj. "The Influence of Tillage and Cover Cropping on Soil Microbial Parameters and Spring Wheat Physiology". Agronomy 10, n.º 2 (1 de febrero de 2020): 200. http://dx.doi.org/10.3390/agronomy10020200.

Texto completo
Resumen
The soil tillage system and the distribution of stubble catch crops increase the content of organic carbon, thus increasing the biochemical activity of soil. The aim of the study was to assess the impact of leguminous cover crops and different tillage soil systems before spring wheat sowing on the count of soil microorganisms, biochemical activity, microbiological diversity and the physiological state of the plants in correlation with yield. The study compared and analysed the following systems: (1) conventional tillage (CT) to a depth of 22 cm, followed by spring wheat sowing using four simplified cultivation technologies called conservation tillage. The following simplified tillage systems were evaluated: (2) skimming before sowing the cover crop and spring wheat sowing after ploughing tillage (CT), (3) skimming before sowing of the cover crop (sowing wheat with no-till technology (NT)), (4) direct sowing of ground cover plants (NT) and spring wheat sowing after ploughing cultivation (CT) and (5) direct sowing of cover crop (NT) and sowing wheat directly into cover crop (NT). The results showed that applying the cover crop and soil tillage method before sowing wheat improved all tested parameters. The highest values of the analysed parameters were observed in the treatment with soil skimming before sowing of the cover plant, and then with sowing the wheat directly into the mulch. The activity of dehydrogenase was 90% higher, while the activity of phosphatase was 32% higher, in comparison to the control group. Both the activity of catalase and the biological index of fertility were 200% higher, in comparison to the control group. Metagenomic analysis showed that soil bacterial communities collected during treatment ‘zero’ and after different cultivations differed in the structure and percentage of individual taxa at the phylum level.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

EE, Lutz, HD Merch醤 y AE Morant. "Double-purpose wheat production and its association with a short-cycle wheat". Phyton 75, n.º 1 (2006): 85–89. http://dx.doi.org/10.32604/phyton.2006.75.085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Cosgrove, Daniel J. "Expanding wheat yields with expansin". New Phytologist 230, n.º 2 (2 de marzo de 2021): 403–5. http://dx.doi.org/10.1111/nph.17245.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

MIRANDA, L. N. y D. L. ROWELLO. "Aluminium-phosphate interactions in wheat". New Phytologist 113, n.º 1 (septiembre de 1989): 7–12. http://dx.doi.org/10.1111/j.1469-8137.1989.tb02389.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Gyanwali, Prashant y Renuka Khanal. "EFFECT OF DROUGHT STRESS IN MORPHOLOGY, PHENOLOGY, PHYSIOLOGY AND YIELD OF WHEAT". Plant Physiology and Soil Chemistry 1, n.º 2 (13 de septiembre de 2021): 45–49. http://dx.doi.org/10.26480/ppsc.02.2021.45.49.

Texto completo
Resumen
The burning issue in the world as of now is global warming. Global warming has been a major threat to agriculture and food security. One of the threats caused by global warming is drought, which is responsible for reduced yield of crops and in some cases severely damage the crops to the point of no production and so it poses a big threat towards food security. By knowing in which system drought affects a plant can be used to develop resistant varieties accordingly. Knowing the effects of drought provides a parameter to judge a plant’s level of resistance towards drought. New drought tolerant varieties can be produced by making crosses between varieties which are less affected by drought and selecting among their progeny.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kershanskaya, O. I. "PHYSIOLOGY-BIOCHEMICAL AND MOLECULAR BIOLOGICAL ASPECTS OF OPTIMAL PHOTOSYNTHETIC WHEAT PLANT TYPE". Biochemical Society Transactions 28, n.º 5 (1 de octubre de 2000): A404. http://dx.doi.org/10.1042/bst028a404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Karimi, J. y S. Mohsenzadeh. "Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings". Russian Journal of Plant Physiology 63, n.º 1 (enero de 2016): 119–23. http://dx.doi.org/10.1134/s1021443716010106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Barneix, Atilio J. "Physiology and biochemistry of source-regulated protein accumulation in the wheat grain". Journal of Plant Physiology 164, n.º 5 (mayo de 2007): 581–90. http://dx.doi.org/10.1016/j.jplph.2006.03.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Bibi, Asia, Sadia Qureshi, Iram Shehzadi, Muhammad Shoaib Amjad, Nosheen Azhar, Tahira Batool, Sadiqa Firdous, Muhammad Khan y Sajid Shokat. "Appraisal of nitric oxide priming to improve the physiology of bread wheat". Journal of Agricultural Science 158, n.º 1-2 (marzo de 2020): 99–106. http://dx.doi.org/10.1017/s0021859620000374.

Texto completo
Resumen
AbstractSeed priming is a pre-sown treatment and it is often used to improve the performance of plants in any environment, especially germination. In the current study, various concentrations of nitric oxide (NO) were used to evaluate its role for the induction of physiological variations within seven different wheat (Triticum aestivum L.) genotypes. Two experiments were conducted during 2013 and 2014 and the data were statistically analysed for significance. All these genotypes after treatment with sodium nitroprusside (SNP) as NO donor at 10−4 and 10−5 M concentrations were sown following randomized complete block design with triplicates in the fields of District Muzaffarabad, Pakistan. The concentration of NO at 10−4 M showed promising results and most of the studied characters were found improved compared to control. Wheat varieties primed with 10−4 M SNP showed highest germination speed and germination percentage. NARC-2011 and Uqab-2002 showed much improvement in physiological attributes at both concentrations of NO priming. However, Uqab-2002 and Punjab-2011 showed a significant increase in chlorophyll contents and leaf moisture content with 10−4 and 10−5 M SNP priming compared to control. Highest relative water content was observed within unprimed Lasani, whereas the relative injury was found to be decreased at 10−4 M SNP primed Faisalabad-2008. Wheat varieties Punjab-2011 and Faisalabad-2008 showed the highest increase in grain yield and biological yield by 10−4 M SNP. Hence, it is concluded that sowing of crops after priming at 10−4 M NO concentration can improve the germination, biochemistry and physiology that ultimately lead to an increase in crop yield.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ishag, H. M. y O. A. A. Ageeb. "The Physiology of Grain Yield in Wheat in an Irrigated Tropical Environment". Experimental Agriculture 27, n.º 1 (enero de 1991): 71–77. http://dx.doi.org/10.1017/s0014479700019219.

Texto completo
Resumen
SUMMARYThe potential yield of wheat and the physiological basis of yield limitation in the lowland irrigated tropics was investigated in three cultivars planted at five sowing dates. Maximum grain yields were achieved by cultivars that flowered in January when the weather was coolest. The period from sowing to terminal spikelet initiation was similar for all varieties and all sowing treatments. The period from terminal spikelet initiation to ear emergence was increased when seed was sown in late November or early December rather than in October or early November. Manipulation of the sowing date in relation to the choice of cultivar had a considerable effect on grain yield.H. M. Ishag and O. A. A. Ageeb: Rendimiento del trigo en las zonas tropicales.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Karimi, J. y S. Mohsenzadeh. "Effects of Silicon Oxide Nanoparticles on Growth and Physiology of Wheat Seedlings". Физиология растений 63, n.º 1 (2016): 126–30. http://dx.doi.org/10.7868/s0015330316010103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Jenner, CF, TD Ugalde y D. Aspinall. "The Physiology of Starch and Protein Deposition in the Endosperm of Wheat". Functional Plant Biology 18, n.º 3 (1991): 211. http://dx.doi.org/10.1071/pp9910211.

Texto completo
Resumen
Yield and protein percentage are key issues in the production and marketing of wheat. Yield is a measure of the activity of processes contributing to deposition of starch in the grain, and protein percentage, while not independent of yield, reflects processes in nitrogen metabolism. This paper considers starch and protein deposition in the endosperm of wheat from a physiological point of view and, in particular, explores the extent to which deposition of starch or protein can be manipulated and increased independently of the other product. Rate and duration of both starch and protein deposition in the endosperm of wheat are all independent events, controlled by separate mechanisms. Consideration of this independence can contribute to promoting specific responses within the plant that culminate in starch and protein deposition, whether attempts at improvement be genetic or agronomic in approach. The capacity, or potential, of the grain to accumulate dry matter is established during the grain enlargement phase, that is within the first 15-20 days after anthesis. Genetic, morphological and physiological factors influence development of this capacity, but a major determinant is a substrate effect on mitotic activity in the endosperm. Grain filling commences 10-15 days after anthesis and occupies the last 20-30 days until the grain ripens. Grain filling is the deposition of polymeric product in cells and organelles formed during the grain enlargement phase. Undoubtedly, stress curtails assimilate supply during grain filling but, under adequate growing conditions, both the rate and duration of starch deposition during grain filling are determined mainly by factors that operate within or close to the grain itself. On the other hand, the rate and duration of protein deposition are determined mainly by factors of supply external to the grain. This contrast can be considered in its simplest form as starch deposition lying on an asymptotic region of a rate-versus-supply relationship, while protein deposition lies on a linear region. Strategies for improving starch and protein deposition in wheat are discussed. Starch yield and protein yield should be selected as independent traits in cultivar improvement, and crop management should reflect differences in source-sink relations for starch deposition and protein deposition during the grain filling stage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Li, Huawei, Dong Jiang, Bernd Wollenweber, Tingbo Dai y Weixing Cao. "Effects of shading on morphology, physiology and grain yield of winter wheat". European Journal of Agronomy 33, n.º 4 (noviembre de 2010): 267–75. http://dx.doi.org/10.1016/j.eja.2010.07.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Yadav, Sapna, Sinky Sharma, Kamal Dutt Sharma, Pooja Dhansu, Suman Devi, Kumar Preet, Pooja Ahlawat et al. "Selenium Mediated Alterations in Physiology of Wheat under Different Soil Moisture Levels". Sustainability 15, n.º 3 (17 de enero de 2023): 1771. http://dx.doi.org/10.3390/su15031771.

Texto completo
Resumen
Soil moisture stress is one of the most serious aspects of climate change. Selenium (Se) is regarded as an essential element for animal health and has been demonstrated to protect plants from a number of abiotic challenges; however, our knowledge of Se-regulated mechanisms for enhancing crop yield is limited. We investigated the effects of exogenous Se supplementation on physiological processes that may impact wheat productivity during soil moisture stress. The plants were grown in plastic containers under screen-house conditions. The experiment was laid out in CRD consisting of three soil moisture regimes, i.e., control (soil moisture content of 12.5 ± 0.05%), moderate (soil moisture content of 8.5 ± 0.05%), and severe moisture stress (soil moisture content of 4.5 ± 0.05%). Selenium was supplied using sodium selenite (Na2SeO3) through soil application before sowing (10 ppm) and foliar application (20 ppm and 40 ppm) at two different growth stages. The foliar spray of Se was applied at the vegetative stage (70 days after planting) and was repeated 3 weeks later, whereas the control consisted of a water spray. The water status, photosynthetic efficiency, and yield were significantly decreased due to the soil’s moisture stress. The exogenous Se application of 40 ppm resulted in decreased negative leaf water potential and improved relative water contents, photosynthetic rate, transpiration rate, and stomatal conductance in comparison to the control (without selenium) under water shortage conditions except the plants treated with soil application of selenium under severe moisture stress at 70 DAS. Subsequently, Se-regulated mechanisms improved 100 seed weight, biological yield, and seed yield per plant. We suggest that Se foliar spray (40 ppm) is a practical and affordable strategy to increase wheat output in arid and semi-arid regions of the world that are experiencing severe water shortages.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Howarth, J., S. Parmar, P. Barraclough y M. Hawkesford. "Wheat nutritional genomics: Remobilisation of nitrogen and sulfur during grain-filling in wheat". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 146, n.º 4 (abril de 2007): S247. http://dx.doi.org/10.1016/j.cbpa.2007.01.575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Tyankova, N., N. Zagorska y B. Dimitrov. "Study of drought response in wheat cultivars, stabilized wheat-wheatgrass lines and intergeneric wheat amphidiploids cultivated in vitro". Cereal Research Communications 32, n.º 1 (marzo de 2004): 99–105. http://dx.doi.org/10.1007/bf03543286.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Su, Hui, Cheng Tan, Yonghua Liu, Xiang Chen, Xinrui Li, Ashley Jones, Yulei Zhu y Youhong Song. "Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress". International Journal of Molecular Sciences 23, n.º 22 (15 de noviembre de 2022): 14099. http://dx.doi.org/10.3390/ijms232214099.

Texto completo
Resumen
Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance were primarily bred on agronomic and morphophysiological traits and lacked in molecular investigations. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Riedell, Walter E. "Tolerance of wheat to Russian wheat aphids: Nitrogen fertilization reduces yield loss". Journal of Plant Nutrition 13, n.º 5 (mayo de 1990): 579–84. http://dx.doi.org/10.1080/01904169009364101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Mujeeb-Kazi, A., G. Fuentes-Davilla, Alvina Gul y Javed Mirza. "Karnal bunt resistance in synthetic hexaploid wheats (SH) derived from durum wheat ×Aegilops tauschiicombinations and in some SH × bread wheat derivatives". Cereal Research Communications 34, n.º 4 (diciembre de 2006): 1199–205. http://dx.doi.org/10.1556/crc.34.2006.4.259.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Shakirova, F. M., A. R. Kildibekova, M. V. Bezrukova y A. M. Avalbaev. "Wheat germ agglutinin regulates cell division in wheat seedling roots". Plant Growth Regulation 42, n.º 2 (febrero de 2004): 175–80. http://dx.doi.org/10.1023/b:grow.0000017481.50472.e9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Janda, Tibor, Éva Darko, Sami Shehata, Viktória Kovács, Magda Pál y Gabriella Szalai. "Salt acclimation processes in wheat". Plant Physiology and Biochemistry 101 (abril de 2016): 68–75. http://dx.doi.org/10.1016/j.plaphy.2016.01.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Placido, Dante F., Malachy T. Campbell, Jing J. Folsom, Xinping Cui, Greg R. Kruger, P. Stephen Baenziger y Harkamal Walia. "Introgression of Novel Traits from a Wild Wheat Relative Improves Drought Adaptation in Wheat". Plant Physiology 161, n.º 4 (20 de febrero de 2013): 1806–19. http://dx.doi.org/10.1104/pp.113.214262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Lannou, Christian, Samuel Soubeyrand, Lise Frezal y Joël Chadœuf. "Autoinfection in wheat leaf rust epidemics". New Phytologist 177, n.º 4 (marzo de 2008): 1001–11. http://dx.doi.org/10.1111/j.1469-8137.2007.02337.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

KING, ROD W. "Manipulation of Grain Dormancy in Wheat". Journal of Experimental Botany 44, n.º 6 (1993): 1059–66. http://dx.doi.org/10.1093/jxb/44.6.1059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bilionis, I., B. A. Drewniak y E. M. Constantinescu. "Crop physiology calibration in CLM". Geoscientific Model Development Discussions 7, n.º 5 (14 de octubre de 2014): 6733–71. http://dx.doi.org/10.5194/gmdd-7-6733-2014.

Texto completo
Resumen
Abstract. Farming is using more terrestrial ground, as population increases and agriculture is increasingly used for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity and net ecosystem exchange from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC).
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ceresini, Paulo Cezar, Vanina Lilián Castroagudín, Fabrício Ávila Rodrigues, Jonas Alberto Rios, Carlos Eduardo Aucique-Pérez, Silvino Intra Moreira, Eduardo Alves, Daniel Croll y João Leodato Nunes Maciel. "Wheat Blast: Past, Present, and Future". Annual Review of Phytopathology 56, n.º 1 (25 de agosto de 2018): 427–56. http://dx.doi.org/10.1146/annurev-phyto-080417-050036.

Texto completo
Resumen
The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by Pyricularia graminis-tritici ( Pygt), a species genetically distinct from the Pyricularia oryzae species that causes rice blast. Pygt has high genetic and phenotypic diversity and a broad host range that enables it to move back and forth between wheat and other grass hosts. Recombination is thought to occur mainly on the other grass hosts, giving rise to the highly diverse Pygt population observed in wheat fields. This review brings together past and current knowledge about the history, etiology, epidemiology, physiology, and genetics of wheat blast and discusses the future need for integrated management strategies. The most urgent current need is to strengthen quarantine and biosafety regulations to avoid additional spread of the pathogen to disease-free countries. International breeding efforts will be needed to develop wheat varieties with more durable resistance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía