Literatura académica sobre el tema "Wet chemical syntheses"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Wet chemical syntheses".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Wet chemical syntheses"
Gilroy, Kyle D., Hsin-Chieh Peng, Xuan Yang, Aleksey Ruditskiy y Younan Xia. "Symmetry breaking during nanocrystal growth". Chemical Communications 53, n.º 33 (2017): 4530–41. http://dx.doi.org/10.1039/c7cc01121k.
Texto completoWang, Bingzhe, Verena Engelhardt, Alexandra Roth, Rüdiger Faust y Dirk M. Guldi. "n- versus p-doping of graphite: what drives its wet-chemical exfoliation?" Nanoscale 9, n.º 32 (2017): 11632–39. http://dx.doi.org/10.1039/c7nr03379f.
Texto completoPalmero, Paola. "Microstructural Tailoring of YAG and YAG-Containing Nanoceramics through Advanced Synthesis Routes". Advances in Science and Technology 62 (octubre de 2010): 34–43. http://dx.doi.org/10.4028/www.scientific.net/ast.62.34.
Texto completoGuldi, Dirk Michael. "(Invited) Towards Understanding the Competition of Electron and Energy Transfer in “Molecular” Nanographenes on the Example of Hexa-Peri-Hexabenzocoronene". ECS Meeting Abstracts MA2024-01, n.º 7 (9 de agosto de 2024): 795. http://dx.doi.org/10.1149/ma2024-017795mtgabs.
Texto completoWang, Yumeng y Zhenxing Yin. "Review of Wet Chemical Syntheses of Copper Nanowires and Their Recent Applications". Applied Science and Convergence Technology 28, n.º 6 (30 de noviembre de 2019): 186–93. http://dx.doi.org/10.5757/asct.2019.28.6.186.
Texto completoBecker, Sidney, Jonas Feldmann, Stefan Wiedemann, Hidenori Okamura, Christina Schneider, Katharina Iwan, Antony Crisp, Martin Rossa, Tynchtyk Amatov y Thomas Carell. "Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides". Science 366, n.º 6461 (3 de octubre de 2019): 76–82. http://dx.doi.org/10.1126/science.aax2747.
Texto completoPadmini, P. y T. R. Narayanan Kutty. "Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion". Journal of Materials Chemistry 4, n.º 12 (1994): 1875. http://dx.doi.org/10.1039/jm9940401875.
Texto completoIsobe, T. "Low-temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization". physica status solidi (a) 203, n.º 11 (septiembre de 2006): 2686–93. http://dx.doi.org/10.1002/pssa.200669630.
Texto completoSportelli, Maria, Margherita Izzi, Annalisa Volpe, Maurizio Clemente, Rosaria Picca, Antonio Ancona, Pietro Lugarà, Gerardo Palazzo y Nicola Cioffi. "The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials". Antibiotics 7, n.º 3 (28 de julio de 2018): 67. http://dx.doi.org/10.3390/antibiotics7030067.
Texto completoCorreya, Adrine Antony, V. P. N. Nampoori y A. Mujeeb. "Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects". PeerJ Materials Science 5 (7 de marzo de 2023): e26. http://dx.doi.org/10.7717/peerj-matsci.26.
Texto completoTesis sobre el tema "Wet chemical syntheses"
Qin, Jiadong. "Novel Wet Chemical Syntheses of Graphene Oxide and Vanadium Oxide for Energy Storage Applications". Thesis, Griffith University, 2020. http://hdl.handle.net/10072/393192.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Poirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Texto completoSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Sortland, Øyvind Sunde. "Wet Chemical Synthesis of Materials for Intermediate Band Solar Cells". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16327.
Texto completoTucić, Aleksandar. "Wet chemical synthesis and characterization of organic/TiO 2 multilayers". [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-34138.
Texto completoTucić, Aleksandar [Verfasser]. "Wet chemical synthesis and characterization of organic, TiO2 multilayers / vorgelegt von Aleksandar Tucić". Stuttgart : Max-Planck-Inst. für Metallforschung, 2008. http://d-nb.info/995389497/34.
Texto completoBorton, Peter Thomas. "Preparation and Characterization of Manganese Fulleride". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354556594.
Texto completoKlein, Thomas [Verfasser]. "Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides / Thomas Klein". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1231792027/34.
Texto completoKennedy, Steven Roger 1971. "Synthesis, characterization and use of peroxotungstic ethoxide as a precursor to wet-chemically derived tungsten oxide thin films". Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/278554.
Texto completoRostek, Alexander [Verfasser] y Matthias [Akademischer Betreuer] Epple. "Wet-chemical synthesis of mono- and bimetallic nanoparticles of group VIII to XI metals and their detailed characterisation / Alexander Rostek ; Betreuer: Matthias Epple". Duisburg, 2019. http://d-nb.info/1191691055/34.
Texto completoHagelin, Alexander. "ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64730.
Texto completoLibros sobre el tema "Wet chemical syntheses"
Rottenberg, Jonathan. Depression. Oxford University Press, 2021. http://dx.doi.org/10.1093/wentk/9780190083151.001.0001.
Texto completoNorwood, F. Bailey, Michelle S. Calvo-Lorenzo, Sarah Lancaster y Pascal A. Oltenacu. Agricultural and Food Controversies. Oxford University Press, 2015. http://dx.doi.org/10.1093/wentk/9780199368433.001.0001.
Texto completoWertz, Julie, Jonathan Faiers, Willow Mullins, Beverly Lemire, Susan Carden y Fiona Anderson. Turkey Red. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350217249.
Texto completoCapítulos de libros sobre el tema "Wet chemical syntheses"
Majid, Abdul y Maryam Bibi. "Wet Chemical Synthesis Methods". En Cadmium based II-VI Semiconducting Nanomaterials, 43–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68753-7_3.
Texto completoNagabhushana, K. S. y H. Bönnemann. "Wet Chemical Synthesis of Nanoparticles". En Nanotechnology in Catalysis, 51–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9048-8_4.
Texto completoJadhav, Abhijit. "Wet Chemical Methods for Nanop article Synthesis". En Chemical Methods for Processing Nanomaterials, 49–58. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429023187-3.
Texto completoZhang, Fan. "“Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles". En Photon Upconversion Nanomaterials, 21–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_2.
Texto completoSingh, Vartika S. y S. V. Moharil. "Simple Wet-Chemical Synthesis of Ce3+ Doped γ-BaAlF5". En Springer Proceedings in Physics, 557–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_53.
Texto completoMurase, Hideaki, Shoichiro Shio y Atsushi Nakahira. "Synthesis and Evaluation of Hollow-Tubular ZnO by Wet Chemical Method". En Solid State Phenomena, 571–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.571.
Texto completoShrivastava, Navadeep y Surender Kumar Sharma. "Controlled Wet Chemical Synthesis of Multifunctional Nanomaterials: Current Status and Future Possibility". En Nanohybrids in Environmental & Biomedical Applications, 3–28. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351256841-1.
Texto completoAsamoah, R. B., A. Yaya, E. Annan, P. Nbelayim, F. Y. H. Kutsanedzie, P. K. Nyanor y I. Asempah. "Novel Cost-Effective Synthesis of Copper Oxide Nanostructures by The Influence of pH in the Wet Chemical Synthesis". En Sustainable Education and Development – Sustainable Industrialization and Innovation, 522–29. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25998-2_40.
Texto completoJeon, Seung Yup, Eun Ju Chae, Won Ki Lee, Gun Dae Lee, Seong Soo Hong, Seog Young Yoon y Seong Soo Park. "A Study for Synthesis of Nanobelt and Nanowire Nickel Powders by Wet Chemical Method". En Materials Science Forum, 83–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.83.
Texto completoKasinath, Rajendra K., Michael Klem y Robert Usselman. "Citrate Mediated Wet Chemical Synthesis of Fe Doped Nanoapatites: A Model for Singly Doped Multifunctional Nanostructures". En Supplemental Proceedings, 11–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch2.
Texto completoActas de conferencias sobre el tema "Wet chemical syntheses"
Tumram, Priya V., Pranay R. Kautkar y S. V. Moharil. "Wet chemical synthesis of KCaI3:Eu2+ phosphor". En PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098612.
Texto completoTumram, Priya V., S. P. Wankhede y S. V. Moharil. "Wet chemical synthesis of KSr2I5:Eu2+ phosphor". En INTERNATIONAL CONFERENCE ON “MULTIDIMENSIONAL ROLE OF BASIC SCIENCE IN ADVANCED TECHNOLOGY” ICMBAT 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5100391.
Texto completoZhang, Can-ying, Hai-tao Zhu y Da-xiong Wu. "Controllable Synthesis of Nanofluids With Wet Chemical Method". En ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18163.
Texto completoCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto y Ana Lilia Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". En European Conference on Biomedical Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ecbo.2015.95371h.
Texto completoSamanta, P. K., A. K. Mandal, S. Mishra y A. Saha. "Wet-chemical synthesis and optical properties of CuO nanoparticles". En 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). IEEE, 2017. http://dx.doi.org/10.1109/iementech.2017.8076941.
Texto completoKlochko, N. P., V. R. Kopach, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, O. N. Otchenashko, D. O. Zhadan et al. "Nanostructured thermoelectric thin films obtained by wet chemical synthesis". En 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190362.
Texto completoCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto y Ana L. Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". En European Conferences on Biomedical Optics, editado por J. Quincy Brown y Volker Deckert. SPIE, 2015. http://dx.doi.org/10.1117/12.2183183.
Texto completoCepeda-Pérez, E. I., M. A. Cueto-Bastida, F. Durán-Robles, L. Pérez-Mayen, T. López-Luke y E. de la Rosa. "Cell Imaging Technique Using Quantum Dots by Wet Chemical Synthesis". En Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.lth4a.25.
Texto completoPark, H. Y., K. M. Lee, Y. H. Ahn, Soonil Lee, Ken Ha Koh, K. H. Park y D. R. Suh. "Cathodoluminescence Characterization of ZnO Nanorods Grown by Wet Chemical Synthesis". En 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391340.
Texto completoSugan, S. y R. Dhanasekaran. "Wet chemical synthesis and characterization of AgGaSe[sub 2] nanoparticles". En PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810128.
Texto completoInformes sobre el tema "Wet chemical syntheses"
Landolt, Peter, Ezra Dunkelblum, Robert R. Heath y Moshe Kehat. Host Plant Chemical Mediation of Heliothis Reproductive Behavior. United States Department of Agriculture, octubre de 1992. http://dx.doi.org/10.32747/1992.7568753.bard.
Texto completoDinger, Eric y Eric Dinger. Analysis of stream types in Klamath Network parks based on physical habitat and chemical characters. National Park Service, 2024. http://dx.doi.org/10.36967/2306085.
Texto completoSela, Shlomo y Michael McClelland. Desiccation Tolerance in Salmonella and its Implications. United States Department of Agriculture, mayo de 2013. http://dx.doi.org/10.32747/2013.7594389.bard.
Texto completoSchaffer, Arthur A. y Jocelyn Rose. Understanding Cuticle Development in Tomato through the Study of Novel Germplasm with Malformed Cuticles. United States Department of Agriculture, junio de 2013. http://dx.doi.org/10.32747/2013.7593401.bard.
Texto completo