Literatura académica sobre el tema "Water detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Water detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Water detection"
Sankary, Nathan y Avi Ostfeld. "Analyzing multi-variate water quality signals for water quality monitoring station placement in water distribution systems". Journal of Hydroinformatics 20, n.º 6 (12 de septiembre de 2018): 1323–42. http://dx.doi.org/10.2166/hydro.2018.162.
Texto completoNajam, Liath Ahmed, Hazim Louis Mansour, Nada Fadhil Tawfiq y Mahmood Salim Karim. "Measurement of Radon Gas Concentrations in Tap Water Samples for Thi-Qar Governorate Using Nuclear Track Detector (CR-39)". Detection 04, n.º 01 (2016): 1–8. http://dx.doi.org/10.4236/detection.2016.41001.
Texto completoCao, Hui-Wen, Yu-Peng Jing, Shi-Rui Zhao, Xin-Wei Xu, He Tian, Xin Xin, Xiao-Ning Li et al. "A discovery of an ultra-pure water detection method based on water mark". Modern Physics Letters B 29, n.º 03 (30 de enero de 2015): 1450271. http://dx.doi.org/10.1142/s0217984914502716.
Texto completoAlsamman, A. y M. Syed. "RGB-BASED DEEP SURFACE WATER CONTOUR DETECTION". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (30 de mayo de 2022): 827–32. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-827-2022.
Texto completoZhang, Chuanhao. "Miniaturized detection devices powered by various heaters: A quick review under the background of water-borne disease epidemics". Advances in Engineering Technology Research 9, n.º 1 (25 de enero de 2024): 670. http://dx.doi.org/10.56028/aetr.9.1.670.2024.
Texto completoGe, Hongyi, Zhenyu Sun, Yuying Jiang, Xuyang Wu, Zhiyuan Jia, Guangyuan Cui y Yuan Zhang. "Recent Advances in THz Detection of Water". International Journal of Molecular Sciences 24, n.º 13 (30 de junio de 2023): 10936. http://dx.doi.org/10.3390/ijms241310936.
Texto completoLi, Yu, Jinggang Chu, Guozhen Wei, Sifan Jin, Tiantian Yang y Bo Li. "Robust Placement of Water Quality Sensor for Long-Distance Water Transfer Projects Based on Multi-Objective Optimization and Uncertainty Analysis". Sustainability 13, n.º 4 (8 de febrero de 2021): 1834. http://dx.doi.org/10.3390/su13041834.
Texto completoHigashi, Yasuhiko. "Development of Simultaneous HPLC-Fluorescence Assay of Phenol and Chlorophenols in Tap Water after Pre-Column Derivatization with 3-Chlorocarbonyl-6,7-dimethoxy-1- methyl-2(1<i>H</i>)-quinoxalinone". Detection 04, n.º 01 (2016): 16–24. http://dx.doi.org/10.4236/detection.2016.41003.
Texto completoWongniramaikul, Worawit y Aree Choodum. "Synthesis of Polymer Sensor for Detection of Phosphate in Water". International Journal of Chemical Engineering and Applications 8, n.º 3 (junio de 2017): 221–25. http://dx.doi.org/10.18178/ijcea.2017.8.3.660.
Texto completoKwietniewski, Marian, Piotr Świercz y Jarosław Chudzicki. "Modern methods for monitoring water leakages in water networks". Studia Geotechnica et Mechanica 44, n.º 1 (1 de marzo de 2022): 53–65. http://dx.doi.org/10.2478/sgem-2022-0001.
Texto completoTesis sobre el tema "Water detection"
Chienthavorn, Orapin. "Detection in superheated water chromatography". Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/32394.
Texto completoBergua, Canudo José Francisco. "Nanobiosensors for contaminants detection in water". Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/670394.
Texto completoEsta tesis tiene como objetivo desarrollar biosensores para el monitoreo ambiental. Primero, se ha desarrollado un biosensor colorimétrico basado en lateral flow strips (LFS) para la detección y cuantificación de Escherichia coli como indicador fecal universal. En este caso, nanopartículas de oro (AuNP) se utilizan como transductores ópticos y anticuerpos policlonales como elementos de bioreconocimiento para capturar, marcar e indicar la presencia de la bacteria. Paralelamente, se ha desarrollado un sistema de filtración para mejorar la sensibilidad de las LFS. La optimización del flujo de la muestra a través de los diferentes materiales ha realizado mediante una técnica innovadora basada en el seguimiento del flujo de la bacteria bioluminiscente Aliivibrio fischeri, similar en tamaño y forma a E. coli. Finalmente, estos LFB se han probado con muestras de agua de ríos y aguas residuales, mostrando una sensibilidad similar y buena reproducibilidad y selectividad en todos los casos. En segundo lugar, se ha desarrollado un biosensor de toxicidad bioluminiscente para la detección y cuantificación de pesticidas en muestras de agua. En particular, Aliivibrio fischeri, una bacteria bioluminiscente, se ha utilizado como elemento de bioreconocimiento y transductor porque aumenta y disminuye la bioluminiscencia de acuerdo con la concentración de compuestos tóxicos en las muestras de agua. Además, el óxido de grafeno (GO) se ha utilizado como un potenciador del crecimiento no específico para promover el crecimiento bacteriano y aumentar la sensibilidad del sistema al detectar parcialmente la bioluminiscencia emitida por A. fischeri. La detección y cuantificación de la bioluminiscencia se realizó con un teléfono móvil que permite una evaluación de la toxicidad del agua de forma portátil, más barata, y más fácil de usar que los estándares en los laboratorios. En tercer lugar, se ha desarrollado una plataforma portátil basada en un teléfono móvil para realizar ensayos que requieren una detección óptica, incluyendo ensayos colorimétricos, fluorescentes y bioluminiscentes. Esta plataforma se ha utilizado para llevar a cabo y analizar pruebas ELISA estándar basadas en resultados colorimétricos para la detección de la inmunoglobulina humana y una proteína del coronavirus. Además, el sistema permite realizar un seguimiento de la agregación de AuNPs en función del color de la solución. Por otro lado, la plataforma se ha utilizado para detectar y cuantificar quantum dots (QD) y otros indicadores fluorescentes (por ejemplo, fluoresceína), así como para realizar pruebas ELISA fluorescentes basadas en estos transductores. Además, la plataforma permite realizar lecturas bioluminiscentes con aplicaciones como el análisis de la toxicidad del agua. Finalmente, la plataforma es útil para el cultivo de bacterias, mediciones de turbidez y detección de resistencia a antibióticos.
This thesis aims to develop biosensing tools for environmental monitoring. First, a colorimetric lateral flow biosensor (LFB) has been developed for the detection and quantification of Escherichia coli as a universal fecal indicator. Gold nanoparticles (AuNPs) are used as optical transducers and polyclonal antibodies as the biorecognition elements to capture, tag and indicate the presence of the bacteria. In parallel, a filtration system has been developed to improve the sensitivity of the LFBs. The optimization of the flow properties of the different lateral flow materials has been done by an innovative technique based on the tracking of the flow of the bioluminescent bacteria Aliivibrio fischeri, similar in size and shape to E. coli. Eventually, these LFBs have been tested with river and sewage waters, showing similar sensitivity and good reproducibility and selectivity in all the cases. Second, a bioluminescent toxicity biosensor has been developed for the detection and quantification of pesticides in water samples. In particular, Aliivibrio fischeri, a bioluminescent bacteria, has been used as the biorecognition element and the transducer because it turns up and down bioluminescence according to the concentration of toxic compounds within the water samples. Besides, graphene-oxide (GO) has been used as a non-specific growth enhancer to promote bacterial growth and increase the sensitivity of the system by partially screening the bioluminescence emitted by A. fischeri. The detection and quantification of the bioluminescence has been performed by a smartphone that allows for a cheaper, more user friendly, and portable water toxicity assessment. Third, a smartphone-based portable platform has been developed for the performance of optical sensing, including colorimetric, fluorescent, and bioluminescent assays. This platform has been used to perform and read standard ELISA tests based on colorimetric outputs for human IgG and coronavirus detection. In addition, the system allows for tracking AuNPs aggregation based on the color output of the solution. On the other hand, the platform has been used to detect and quantify quantum dots (QDs) and other fluorescent reporters (i.e. fluorescein), as well as performing fluorescent ELISA tests based on these transducers. Next, the platform allows for bioluminescent readouts with applications in toxicity analysis. Eventually, the platform is suitable for bacteria culture, turbidity measurements, and drug screening for antibiotic resistances assessment.
Gao, Yan. "Leak detection in plastic water pipes". Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423122.
Texto completoSamuelsson, Oscar. "Fault detection in water resource recovery facilities". Licentiate thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-329777.
Texto completoGelin, Martin y Skogsberg Rikard Fridsén. "Water Contamination Detection With Artificial Neural Networks". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295605.
Texto completoDrickvatten är en av våra mest värdefulla tillgångar, det är därför mycket viktigt att det finns sätt att pålitligt övervaka om dricksvattennätet blivit förorenat. För att kunna minimera antalet falsklarm och samtidigt ha hög känslighet mot dessa föroreningar undersöktes och implementerades en lösning med maskininlärningsalgoritmer. Mätdata tillhandahölls av Linköpings universitet och kom från en ny sensor kallad elektronisk tunga. Lösningen var ett artificiellt neuralt nätverk i form av en Autoencoder, som kunde lära sig det dynamiska beteende som ofarliga avvikelser utgjorde. Detta gav en lösning som i medel gav ett falsklarm per sju dagar. Detta gjordes genom att utvärdera rådata och konstruera en struktur på indata som tar hänsyn till dygnsbunda naturliga fenomen. Denna struktur användes sedan för att träna det neurala nätverket. Lösningen kunde upptäcka fel ner till 1.5% genom att jämföra indata med den rekonstruerade vektorn, och på så sätt ge ett alarm.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Nobliá, Matilda y Christian Ryan. "Contamination Event Detection in Water Distribution Systems". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214698.
Texto completoMvelase, Mashinga Johannes. "Radon escape from water". Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_3869_1307688700.
Texto completoThis thesis aims to measure the rate of radon loss from water in a systematic way. The dependence on surface area, temperature and concentration will be investigated. The experiments were done at UWC by creating radon using radium sources and then measuring the radon concentrations inside a vacuum chamber to obtain the speed of radon escape from the water. The results are compared to a model [Cal 2002] where the radon concentration in the air and hence the transfer rate is measured using a RAD7 radon detector. Since the equations cannot be solved analytically, a numerical solution is employed. The radon transfer velocity coefficient is found to be (1.9±
0.5)×
10-6m/s. This value indicates that the escape of radon should not be a problem when a sample is open to the air for a minute or two.
Walrath, Karen Elizabeth. "Evanescent wave spectroscopy for detection of water and water treeing in polymers". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/40582.
Texto completoIncludes bibliographical references (p. 185-191).
by Karen Elizabeth Walrath.
Ph.D.
Wennberg, Aina Charlotte. "PCR-detection of Vibrio cholerae in ballast water". Thesis, Norwegian University of Science and Technology, Department of Biotechnology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-6883.
Texto completoParent, Uribe Santiago. "Endotoxins detection and control in drinking water systems". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100231.
Texto completoEndotoxins can be released in the air as well as in the water; previous studies have mainly focused on airborne endotoxins. Although many studies on endotoxins in raw and treated drinking waters have been performed, few have assessed seasonal variations and none have been conducted in Eastern Canada. Furthermore, a clear understanding of removal of endotoxins by various water treatment processes is still required.
Two methods to measure the concentrations of endotoxin were used and compared, the Limulus Amebocyte Lysate test (LAL) and the recombinant Factor C test (rFC). Raw water samples were taken from various drinking water sources around the Island of Montreal. The effects of free chlorine, UV radiation, and ozone were studied in batch experiments on filtered water samples via typical dosages and fluences used in drinking water treatment facilities. Residual concentrations for free chlorine were 0.8 and 1.6 mg/L; ozone doses were 0.5 and 1 mg/L; UV fluences were 40 and 100 mWs/cm2. Detention times of 20 and 60 minutes were tested for chlorine and 5 and 20 minutes for ozone. Grab sampling from three drinking water treatment plants in the Montreal area was performed during the months of June and late August/September 2006 and January 2007. Processes at these plants include coagulation and flocculation, sand filtration, ozonation and disinfection by chlorine. To test the variation in endotoxin concentrations during a sand filter cycle, samples were withdrawn directly from a filter in one of the treatment plants studied. The filtration cycle, from one backwash to the next one, lasts 72 h. Samples were collected immediately before the backwash, at the beginning and at the end of the ripening period, at the beginning of the filtration cycle and 48 h later, which corresponds to a half cycle period.
Of the two endotoxin detection methods used, LAL consistently gave slightly higher values compared to rFC; rFC also required more expensive hardware, but the method was less tedious and reagent costs were lower. Results presented, unless otherwise stated, were obtained with the rFC method. Endotoxin levels decreased in raw water samples between June and September. Concentrations ranged from 20 to 30 EU/mL in June, and decreased to 10 to 14 EU/mL in August and beyond. For the disinfection processes, the UV and free chlorine doses tested had little or no effect on the endotoxin concentrations, but ozone reduced the concentrations by up to 75%. Sand filtration and flocculation showed significant endotoxin removal efficiencies (50--60%). Levels remained around 5 EU/mL throughout the remaining treatment processes regardless of the influent concentration. Hence, endotoxin inactivation by free chlorine and UV does not occur with typical doses used in drinking water treatment plants; in contrast, flocculation and sand filtration, as well as ozonation, are much more effective.
Libros sobre el tema "Water detection"
Association, American Water Works, ed. Water audits and leak detection. Denver, CO: American Water Works Association, 1990.
Buscar texto completo1935-, Schwartzbrod L., ed. Viruses in water systems: Detection and identification. New York: VCH, 1988.
Buscar texto completoClark, Stuart A., K. Clive Thompson, C. William Keevil y Mark S. Smith, eds. Rapid Detection Assays for Food and Water. Cambridge: Royal Society of Chemistry, 2001. http://dx.doi.org/10.1039/9781847551818.
Texto completoA, Clark Stuart, ed. Rapid detection assays for food and water. Cambridge: Royal Society of Chemistry, 2001.
Buscar texto completoManea, F. Wet electrochemical detection of organic impurities. New York: Nova Science Publishers, 2010.
Buscar texto completoAbo-Amer, Aly E. Molecular approach for detection of waterborne pathogens. Hauppauge, N.Y: Nova Science Publisher's, 2011.
Buscar texto completoFoundation, AWWA Research y United States. Environmental Protection Agency, eds. Improved mycobacterium avium complex detection methods. Denver, CO: Awwa Research Foundation, 2008.
Buscar texto completoOffenhartz, Barbara H. Enzyme-based detection of chlorinated hydrocarbons in water. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Buscar texto completoOffenhartz, Barbara H. Enzyme-based detection of chlorinated hydrocarbons in water. Cincinnati, OH: U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, 1985.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Advanced water vapor lidar detection system: Final report. [Washington, DC: National Aeronautics and Space Administration, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Water detection"
Yang, Hongwei y Wenjin Zhao. "Detection of Water". En Encyclopedia of Lunar Science, 1–9. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-05546-6_122-1.
Texto completoYang, Hongwei y Wenjin Zhao. "Detection of Water". En Encyclopedia of Lunar Science, 197–204. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-14541-9_122.
Texto completoNorgren, R. "Sensory Detection of Water". En Thirst, 221–31. London: Springer London, 1991. http://dx.doi.org/10.1007/978-1-4471-1817-6_13.
Texto completoTharani, Mohbat, Abdul Wahab Amin, Fezan Rasool, Mohammad Maaz, Murtaza Taj y Abubakar Muhammad. "Trash Detection on Water Channels". En Neural Information Processing, 379–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92185-9_31.
Texto completoStarr, Justin. "Other Leak Detection Technologies". En Water and Wastewater Pipeline Assessment Technologies, 133–50. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429198731-7.
Texto completoHaap, Jasmin y Edith Classen. "Analytical Approach for the Detection of Micro-sized Fibers from Textile Laundry". En Springer Water, 73–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71279-6_11.
Texto completoDarsana, P. y K. Varija. "Leakage Detection Studies for Water Supply Systems—A Review". En Water Resources Management, 141–50. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5711-3_10.
Texto completoShaban, Amin y Farouk El-Baz. "Landsat Satellite Images for Lineaments Detection: A Tool to Identify Groundwater Productivity in Lebanon". En Springer Water, 251–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15549-9_15.
Texto completoWainwright, Milton. "Detection Methods for Water-Borne Pathogens". En An Introduction to Environmental Biotechnology, 95–99. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5251-2_9.
Texto completoShah, Krupal, Shreya Sabu y Vedashree Chaphekar. "Water Leakage Detection Using Neural Networks". En Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1, 484–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63128-4_37.
Texto completoActas de conferencias sobre el tema "Water detection"
Balazs, Zoltan, Sveta Miladinov y Chris Pickard. "Breach detection system testing methodology". En 2014 Second Workshop on Anti-malware Testing Research (WATeR). IEEE, 2014. http://dx.doi.org/10.1109/water.2014.7015756.
Texto completoMarkel, Zane y Michael Bilzor. "Building a machine learning classifier for malware detection". En 2014 Second Workshop on Anti-malware Testing Research (WATeR). IEEE, 2014. http://dx.doi.org/10.1109/water.2014.7015757.
Texto completoJackson, Darren, Kaare Anderson y Weston Heuer. "Liquid Water Detection Algorithm for the Magnetostrictive Ice Detector". En International Conference on Icing of Aircraft, Engines, and Structures. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1430.
Texto completoGao, Shang-qi, Zhi-bin Sun, Yuan-da Jiang, Chao Wang y Ke-ming Du. "Optical properties of water for the Yangbajing water cherenkov detector". En International Symposium on Photoelectronic Detection and Imaging 2011, editado por John C. Zarnecki, Carl A. Nardell, Rong Shu, Jianfeng Yang y Yunhua Zhang. SPIE, 2011. http://dx.doi.org/10.1117/12.900762.
Texto completoArredondo, Armando Vazquez. "DETECTION OF WATER LEAKS USING EFSOP WATER DETECTION TECHONOLOGY®". En 46º Seminário de Aciaria - Internacional. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/1982-9345-26678.
Texto completoNath, Pabitra, Trishna Das, Utpal Bora, Nabadweep Chamuah, Iftak Hussain y Diganta Hatiboruah. "Accurate estimation of mercury level concentration in water using smartphone". En Optical Sensing and Detection, editado por Francis Berghmans y Anna G. Mignani. SPIE, 2018. http://dx.doi.org/10.1117/12.2304710.
Texto completoMambretti, S. y E. Orsi. "Genetic algorithms for leak detection in water supply networks". En Urban Water 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/uw120061.
Texto completoMukherji, Soumyo y Sutapa Chandra. "Conducting polymer-based optical sensor for heavy metal detection in drinking water". En Optical Sensing and Detection, editado por Francis Berghmans y Anna G. Mignani. SPIE, 2018. http://dx.doi.org/10.1117/12.2306719.
Texto completoFaruque, Hossain Mansur Resalat, Md Zubair Ebne Rafique, Jing Bai y Yu Yao. "Water Bubble Detection in Turbid Water Using Polarimetric imaging". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.jtu2a.67.
Texto completoChaudhari, Archana, Shaunak Joshi, Shekhar Shegokar y Krushna Rudrawar. "Water Weed Hyacinth Detection". En 2023 International Conference on Integration of Computational Intelligent System (ICICIS). IEEE, 2023. http://dx.doi.org/10.1109/icicis56802.2023.10430233.
Texto completoInformes sobre el tema "Water detection"
Apps, Christopher y Tyler Johnson. PR244-173902-R01 On-water Leak Detection System Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julio de 2018. http://dx.doi.org/10.55274/r0011504.
Texto completoApps, Christopher. PR-244-193900-R01 Oil-on-water Leak Detection Technology Evaluation Phase 2. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), enero de 2020. http://dx.doi.org/10.55274/r0011647.
Texto completoWick, Charles H. y Patrick E. McCubbin. Water Sample Analysis With the Integrated Virus Detection System. Fort Belvoir, VA: Defense Technical Information Center, junio de 2010. http://dx.doi.org/10.21236/ada532453.
Texto completoAllendorf, Mark D. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1415015.
Texto completoC Svoboda, R., A. Bernstein, W. Coleman y S. Dazeley. Feasibility Study for Large Water-Based Neutron and Neutrino Detection. Office of Scientific and Technical Information (OSTI), marzo de 2007. http://dx.doi.org/10.2172/1036852.
Texto completoDeininger. PR-443-13605-R01 Sensors for Gas Quality Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), mayo de 2014. http://dx.doi.org/10.55274/r0010127.
Texto completoSun, Jian-Qiao. Sample Concentration Systems for Chemical and Biological Agent Detection in Water. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2001. http://dx.doi.org/10.21236/ada399976.
Texto completoNelson, Matthew P. y Patrick J. Treado. Optical Detection of Biological and Chemical Threats in Food and Water. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada455251.
Texto completoCooper, Robert Lee, Peter Marleau y Patrick J. Griffin. Ground water and snow sensor based on directional detection of cosmogenic neutrons. Office of Scientific and Technical Information (OSTI), junio de 2011. http://dx.doi.org/10.2172/1177063.
Texto completoRose, Joan B. y D. J. Grimes. Reevaluation of Microbial Water Quality: Powerful New Tools for Detection and Risk Assessment. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2001. http://dx.doi.org/10.21236/ada389605.
Texto completo