Literatura académica sobre el tema "WASTEWATER TREATMENT MODELLING"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "WASTEWATER TREATMENT MODELLING".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "WASTEWATER TREATMENT MODELLING"
Parashar, Varsha, Ashok K. Sharma, Sarita Sharma y Sanjay Verma. "Mathematical Modelling of Uasb Reactor for Dairy Wastewater Treatment". International Journal of Scientific Research 3, n.º 8 (1 de junio de 2012): 151–53. http://dx.doi.org/10.15373/22778179/august2014/43.
Texto completoVanhooren, Henk, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe y Peter A. Vanrolleghem. "WEST: modelling biological wastewater treatment". Journal of Hydroinformatics 5, n.º 1 (1 de enero de 2003): 27–50. http://dx.doi.org/10.2166/hydro.2003.0003.
Texto completoSolon, Kimberly, Eveline I. P. Volcke, Mathieu Spérandio y Mark C. M. van Loosdrecht. "Resource recovery and wastewater treatment modelling". Environmental Science: Water Research & Technology 5, n.º 4 (2019): 631–42. http://dx.doi.org/10.1039/c8ew00765a.
Texto completoMerayo, Noemi, Ana Balea, Javier Tejera, Amalio Garrido-Escudero, Carlos Negro y Angeles Blanco. "Modelling the Mineralization of Formaldehyde by Treatment with Nitric Acid". Water 12, n.º 6 (30 de mayo de 2020): 1567. http://dx.doi.org/10.3390/w12061567.
Texto completoBelia, E., Y. Amerlinck, L. Benedetti, B. Johnson, G. Sin, P. A. Vanrolleghem, K. V. Gernaey et al. "Wastewater treatment modelling: dealing with uncertainties". Water Science and Technology 60, n.º 8 (1 de octubre de 2009): 1929–41. http://dx.doi.org/10.2166/wst.2009.225.
Texto completoHernandez-Sancho, F., M. Molinos-Senante y R. Sala-Garrido. "Cost modelling for wastewater treatment processes". Desalination 268, n.º 1-3 (marzo de 2011): 1–5. http://dx.doi.org/10.1016/j.desal.2010.09.042.
Texto completoDaigger, G. T. "A practitioner’s perspective on the uses and future developments for wastewater treatment modelling". Water Science and Technology 63, n.º 3 (1 de febrero de 2011): 516–26. http://dx.doi.org/10.2166/wst.2011.252.
Texto completoClouzot, Ludiwine, Jean-Marc Choubert, Frédéric Cloutier, Rajeev Goel, Nancy G. Love, Henryk Melcer, Christoph Ort et al. "Perspectives on modelling micropollutants in wastewater treatment plants". Water Science and Technology 68, n.º 2 (1 de julio de 2013): 448–61. http://dx.doi.org/10.2166/wst.2013.272.
Texto completoKamara, A., O. Bernard, A. Genovesi, D. Dochain, A. Benhammou y J. P. Steyer. "Hybrid modelling of anaerobic wastewater treatment processes". Water Science and Technology 43, n.º 1 (1 de enero de 2001): 43–50. http://dx.doi.org/10.2166/wst.2001.0011.
Texto completoHenze, M., M. C. M. van Loosdrecht, G. A. Ekama y D. Brdjanovic. "Biological Wastewater Treatment: Principles, Modelling and Design". Water Intelligence Online 7 (30 de diciembre de 2015): 9781780401867. http://dx.doi.org/10.2166/9781780401867.
Texto completoTesis sobre el tema "WASTEWATER TREATMENT MODELLING"
Thomas, David N. "Flocculation modelling in wastewater treatment". Thesis, Cranfield University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323835.
Texto completoGhavipanjeh, Farideh. "Modelling and control of wastewater treatment". Thesis, Lancaster University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250027.
Texto completoSamsó, Campà Roger. "Numerical modelling of constructed wetlands for wastewater treatment". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144624.
Texto completoSolimeno, Alessandro. "Numerical modelling of microalgae systems for wastewater treatment". Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/441737.
Texto completoLas reacciones y los procesos que ocurren en sistemas mixtos de microalgas y bacterias son difíciles de entender ya que la mayoría de ellos tienen lugar simultáneamente y dependen de muchos parámetros tales como temperatura, radiación solar, disponibilidad de nutrientes (e.g. carbono y nitrógeno) así como ciertas condiciones inhibitorias (e.g. exceso de oxígeno en el medio de cultivo). En comparación con las tecnologías convencionales de tratamiento de aguas residuales, actualmente hay poco conocimiento de las reacciones físicas, químicas y bioquímicas y de los procesos que se producen en los sistemas de tratamiento de microalgas y bacterias. El objetivo principal de la presente tesis doctoral fue desarrollar un nuevo modelo mecanístico integrado, denominado BIO_ALGAE, que incluye procesos físicos y bioquinéticos cruciales para simular el crecimiento de microalgas en diferentes tipos de cultivos, principalmente en aguas residuales. El modelo se utilizó para comprender de una mejor forma las interacciones que se llevan a cabo entre microalgas y bacterias en lagunas de alta carga (LAC) y fotobiorreactores. El modelo BIO_ALGAE se construyó mediante el acoplamiento del River Water Quality Model 1 (RWQM1) y del modelo ASM3 modificado, y se implementó en la plataforma de simulación COMSOL MultiphysicsTM. El carbono inorgánico, utilizado como sustrato limitante para el crecimiento de microalgas, es una de las principales características innovadoras de BIO_ALGAE. Además, la temperatura, la fotorespiración, la dinámica del pH, la radiación solar, la atenuación de la luz y la transferencia de gases a la atmósfera se consideraron los principales factores limitantes del crecimiento de las microalgas. Para reducir la complejidad del modelo en las etapas iniciales de su desarrollo, se decidió empezar por estudiar los procesos físicos, químicos y bioquinéticos sólo de las microalgas, dejando de lado los procesos bacterianos. Una vez calibrados los parámetros más sensibles del modelo, se añadieron los procesos bacterianos, lo que dio lugar al modelo integral BIO_ALGAE. Este modelo fue calibrado y validado con datos experimentales de alta calidad procedentes de LAC operadas a corto y largo plazo. El modelo BIO_ALGAE ha demostrado ser una herramienta eficaz para entender las interacciones de microalgas y bacterias en el tratamiento de aguas residuales y simular la dinámica de diferentes componentes en las LAC. El modelo se utilizó para investigar el efecto de las condiciones ambientales y la disponibilidad de nutrientes en el crecimiento de microalgas. También se estudió el efecto del tiempo de retención hidráulica sobre la proporción relativa de microalgas-bacterias y la producción de biomasa. Gracias al modelo fue posible optimizar el rendimiento tanto de las lagunas de alta carga como del fotobiorreactor.
Soteman, Sven Wilhelm. "Modelling material mass balances over wastewater treatment plants". Doctoral thesis, University of Cape Town, 2005. http://hdl.handle.net/11427/14070.
Texto completoThe overall objective of whole wastewater treatment plant (WWTP)modelling is to develop a COD (electron), carbon (C), nitrogen (N), phosphorus (P), alkilinity (proton), calcium (Ca), magnesium (Mg) and inorganic suspended solids (ISS) concentrations mass balances models for unit operations in municipal WWTPs. The development of such a model, for both steady state and dynamic simulation conditions, is an objective greater that this thesis project, however, it makes a number of significant steps towards it.
Mattei, Maria Rosaria. "Mathematical modelling of multispecies biofilms for wastewater treatment". Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1182/document.
Texto completoThis dissertation relates to the applications of a one-dimensional mathematical model for multispecies biofilm formation and growth. The model consists of a system of nonlinear hyperbolic partial differential equations, describing the growth of microbial species in biofilms, and a system of semilinear parabolic partial differential equations, which governs substrate diffusion from the surrounding aqueous phase into the biofilm. Overall, this leads to a free boundary value problem, essentially hyperbolic. In a first study, the analysis and simulations of the initial phase of biofilm growth have been addressed. The resulting mathematical problem has been discussed by using the method of characteristics and the fixed-point theorem has been used to obtain existence, uniqueness and properties of solutions. A second aspect of the thesis deals with the analysis and prediction of population dynamics in multispecies biofilms for wastewater treatment. The model has been applied to simulate the bacterial competition and to evaluate the influence of substrate diffusion on microbial stratification for a nitrifying multispecies biofilm including Anammox bacteria and a sulfate-reducing biofilm. In both cases, the method of characteristics has been used for numerical purposes and the mass conservation equation plays a crucial role in checking the accuracy of simulations. The simulation results reveal that the model is able to evaluate properly the effects that boundary conditions exert on bacterial competition. Finally, the biofilm model has been extended to include the colonization phenomenon. The new model is able to take into account the invasion of new species diffusing from bulk liquid to biofilm, still based on a set of nonlinear hyperbolic partial differential equations for what concerns growth process. Indeed, the biological invasion process of new species into the biofilm has been modeled by a system of nonlinear parabolic partial differential equations. The invasion model has been successfully applied to simulate the invasion of heterotrophic bacteria in a constituted autotrophic biofilm and viceversa
Janus, Tomasz. "Modelling and simulation of membrane bioreactors for wastewater treatment". Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/9507.
Texto completoPereira, Sofia Filipe. "Modelling of a wastewater treatment plant using GPS-X". Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/13621.
Texto completoThe work present in this thesis was conducted in Portucel Soporcel mill, in the industrial complex of Setúbal, and had as main objective the modelling of the treatment process of the effluents from this industry, using for this purpose the software GPS-X. This program has a clear-cut graphical interface and uses a specialized translator that converts the graphical process into material balance equations, based on dynamic models. These models allow, besides the kinetic descripton of the treatment process carried out at the WWTP, to simulate new scenarios towards the study of critical parameters for the process as well as optimization and control of the WWTP. The effluent that arrives to Portucel’s WWTP, from the pulp and paper mills of the complex, is particularly rich on fibers (solids), lignin, chlorinated and sulphur compounds, resin acids, phenols and starch. It has a brown colour due to the presence of lignin and has a high oxygen chemical demand (about 1,095 g O2/m3). The WWTP uses the activated sludge process with extended aeration. This method allows an efficient removal of organics at the same time as it minimizes the sludge production. For the modelling of the process it was necessary to collect historical data related to the WWTP’s performance over the last 3 years. This data was used as input values for the influent characterisation and as output values to achieve the treated effluent characterisation. Since the first simulation did not lead to the desired output results, it was necessary to proceed to the model calibration, by means of a more detailed study concerning the nutrient and organic fractions of the influent. Once the model was calibrated, a study of the urea flowrate was conducted. The urea is added to the influent, before the beginning of the biological oxidation, as a way to satisfy the nitrogen requirements along the treatment process. However, this flowrate was never submitted to a study that evaluated, in a higher detail, the effective requirements of this nutrient. Thus, some simulations were done using the software, by decreasing successively the value of the urea flowrate and the results obtained were analyzed. Furthermore, these simulations were validated in the WWTP itself, at Portucel, through the decrease of the urea flowrate to half the normal value. Both the simulations and Portucel’s results showed that, actually, the addition of urea is not necessary because it does not affect the treatment process in a significant way, namely in terms of the removal of chemical oxygen demand. The simulations have also showed that the concentration of nitrogen in the final effluent diminishes significantly with the reduction of the urea flowrate, which could be advantageous in an environmental point of view.
Pavasant, Prasert. "Modelling of the extractive membrane bioreactor process". Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266478.
Texto completoLumbers, Jeremy. "Rotating biological contactors : mechanisms, modelling and design". Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47161.
Texto completoLibros sobre el tema "WASTEWATER TREATMENT MODELLING"
Mannina, Giorgio, ed. Frontiers in Wastewater Treatment and Modelling. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58421-8.
Texto completoOlsson, Gustaf. Wastewater treatment systems: Modelling, diagnosis and control. London: IWA Publishing, 1999.
Buscar texto completoM, Henze, ed. Biological wastewater treatment: Principles, modelling and design. London: IWA Pub., 2008.
Buscar texto completoKiourtsidis, S. Advances in crossflow microfiltration process applied in wastewater treatment-modelling. Manchester: UMIST, 1994.
Buscar texto completoSchütze, Manfred R. Modelling, simulation, and control of urban wastewater systems. London: Springer, 2002.
Buscar texto completoM, Henze y IAWPRC Specialised Seminar (1985 : Copenhagen, Denmark), eds. Modelling of biological wastewater treatment: Proceedings of an IAWPRC Specialised Seminar held in Copenhagen, Denmark, 28-30 August 1985. Oxford: Pergmaon, 1986.
Buscar texto completoM, Henze y International Association on Water Pollution Research and Control., eds. Modelling of biological wastewater treatment: Proceedings of an IAWPRC specialised seminar held in Copenhagen, Denmark 28-30 August 1985. Oxford: Pergamon, 1986.
Buscar texto completoLaurent, Julien, Randal Samstag, Jim Wicks y Ingmar Nopens, eds. CFD Modelling for Wastewater Treatment Processes. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781780409030.
Texto completoLaurent, Julien, Ingmar Nopens, Jim Wicks y Randal Samstag. CFD Modelling for Wastewater Treatment Processes. IWA Publishing, 2020.
Buscar texto completoCFD Modelling for Wastewater Treatment Processes. IWA Publishing, 2020.
Buscar texto completoCapítulos de libros sobre el tema "WASTEWATER TREATMENT MODELLING"
Szetela, R. W. "Modelling Wastewater Treatment Plants". En Hydroinformatics Tools for Planning, Design, Operation and Rehabilitation of Sewer Systems, 335–55. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1818-9_15.
Texto completoGupta, A. K. y C. Sahoo. "Treatment of Industrial Wastewater". En Recent Trends in Modelling of Environmental Contaminants, 143–65. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1783-1_6.
Texto completoBoller, M., U. von Gunten, R. Pianta y L. Solcà. "Modelling Full-Scale Advanced Micropollutant Oxidation". En Chemical Water and Wastewater Treatment VI, 125–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59791-6_12.
Texto completoThomas, D. N., S. J. Judd y N. Fawcett. "Flocculation Modelling of Primary Sewage Effluent". En Chemical Water and Wastewater Treatment V, 83–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72279-0_8.
Texto completoDrewnowski, J. y M. Zmarzły. "Mathematical Modelling in Diagnosis of Wastewater Treatment Plant". En Lecture Notes in Civil Engineering, 727–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58421-8_114.
Texto completoMannina, Giorgio. "Erratum to: Frontiers in Wastewater Treatment and Modelling". En Lecture Notes in Civil Engineering, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58421-8_116.
Texto completoRizzo, Anacleto, Tamás Gábor Pálfy y Nicolas Forquet. "Modelling Under Varying Flows". En Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows, 111–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70013-7_7.
Texto completoAlcaraz-Gonzalez, Victor. "Modelling and Control of Wastewater Treatment Processes: An Overview and Recent Trends". En Water and Wastewater Management, 143–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95288-4_12.
Texto completoDžubur, Alma, Amra Serdarević y Suvada Šuvalija. "Modelling Steps for Dynamic Simulation of Wastewater Treatment Processes". En Advanced Technologies, Systems, and Applications VII, 122–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17697-5_10.
Texto completoSantín, Ignacio, Carles Pedret y Ramón Vilanova. "Process Modelling and Simulation Scenarios". En Control and Decision Strategies in Wastewater Treatment Plants for Operation Improvement, 5–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46367-4_2.
Texto completoActas de conferencias sobre el tema "WASTEWATER TREATMENT MODELLING"
Gaya, Muhammad Sani, Norhaliza Abdul Wahab, Yahya Md Sam, Mashitah Che Razali y S. I. Samsudin. "Neuro-fuzzy modelling of wastewater treatment system". En 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2012. http://dx.doi.org/10.1109/iccsce.2012.6487150.
Texto completoZhen, Ran, Liang Wang, Xueli Wu, Chao Si y Jianhua Zhang. "Adaptive neural network and its application in wastewater treatment". En 2015 7th International Conference on Modelling, Identification and Control (ICMIC). IEEE, 2015. http://dx.doi.org/10.1109/icmic.2015.7409460.
Texto completoGasparovic, Claudia L. M., Eduardo Eyng, Laercio M. Frare, Larissa B. C. Sabbi, Michelle Budke Costa y Fábio Orssatto. "Velocity Simulation of an Electrochemical Reactor for Textile Wastewater Treatment". En Modelling, Simulation and Identification / 841: Intelligent Systems and Control. Calgary,AB,Canada: ACTAPRESS, 2016. http://dx.doi.org/10.2316/p.2016.840-048.
Texto completoMa, L., R. Duolikun y X. Ma. "Hydraulic Mode of New Outside Cycle Anaerobic Reactor by Residence Time Distribution in Wastewater Treatment". En Modelling and Simulation. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.699-023.
Texto completoLuca, Laurentiu, Marian Barbu y Sergiu Caraman. "Modelling and performance analysis of an urban wastewater treatment plant". En 2014 18th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2014. http://dx.doi.org/10.1109/icstcc.2014.6982430.
Texto completoBernard, Olivier, Zacharia Hadj-Sadok y Denis Dochain. "Dynamical modelling and state estimation of anaerobic wastewater treatment plants". En 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099912.
Texto completoPittol, José A., Yamitet Sánchez, Rosalba Lamanna, Silvana Revollar y Pastora Vega. "A Fuzzy Virtual Sensor for Substrate Concentration in a Wastewater Treatment Plant". En Computational Intelligence and Bioinformatics / Modelling, Simulation, and Identification. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.755-058.
Texto completoPittol, José A., Yamitet Sánchez, Rosalba Lamanna, Silvana Revollar y Pastora Vega. "A Fuzzy Virtual Sensor for Substrate Concentration in a Wastewater Treatment Plant". En Computational Intelligence and Bioinformatics / Modelling, Simulation, and Identification. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.755-058.
Texto completoBirs, Isabela R., Ioana Nascu, Cosmin Darab y Ioan Nascu. "Modelling and calibration of a conventional activated sludge wastewater treatment plant". En 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2016. http://dx.doi.org/10.1109/aqtr.2016.7501327.
Texto completoFang, Xusheng, Zhengang Zhai, Renhao Xiong, Li Zhang y Bingtao Gao. "LSTM-based Modelling for Coagulant Dosage Prediction in Wastewater Treatment Plant". En AIEE 2022: 2022 The 3rd International Conference on Artificial Intelligence in Electronics Engineering. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512826.3512847.
Texto completo