Literatura académica sobre el tema "Wastewater"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Wastewater".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Wastewater"
Gulyas, H., R. von Bismarck y L. Hemmerling. "Treatment of industrial wastewaters with ozone/hydrogen peroxide". Water Science and Technology 32, n.º 7 (1 de octubre de 1995): 127–34. http://dx.doi.org/10.2166/wst.1995.0217.
Texto completoToczyłowska-Mamińska, Renata y Mariusz Ł. Mamiński. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology". Energies 15, n.º 19 (21 de septiembre de 2022): 6928. http://dx.doi.org/10.3390/en15196928.
Texto completoAasim, Muhammad Tayyab, Muhammad Shaheer Tariq, Muhammad Danish, Iqra Abbasi, Ali Raza y Hammad Haider. "Durability Assessment of Recycled Aggregate Geopolymer Concrete Mixed with Wastewater". MATEC Web of Conferences 398 (2024): 01032. http://dx.doi.org/10.1051/matecconf/202439801032.
Texto completoUtomo, Joseph Christian, Young Mo Kim, Hyun Uk Cho y Jong Moon Park. "Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater". Energies 13, n.º 18 (18 de septiembre de 2020): 4895. http://dx.doi.org/10.3390/en13184895.
Texto completoVerburg, Ilse, H. Pieter J. van Veelen, Karola Waar, John W. A. Rossen, Alex W. Friedrich, Lucia Hernández Leal, Silvia García-Cobos y Heike Schmitt. "Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment". Microorganisms 9, n.º 4 (31 de marzo de 2021): 718. http://dx.doi.org/10.3390/microorganisms9040718.
Texto completoCséfalvay, Edit, Péter Imre y Péter Mizsey. "Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin". Open Chemistry 6, n.º 2 (1 de junio de 2008): 277–83. http://dx.doi.org/10.2478/s11532-008-0026-3.
Texto completoShi, X. L., X. B. Hu, Z. Wang, L. L. Ding y H. Q. Ren. "Effect of reflux ratio on COD and nitrogen removals from coke plant wastewaters". Water Science and Technology 61, n.º 12 (1 de junio de 2010): 3017–25. http://dx.doi.org/10.2166/wst.2010.266.
Texto completoAlalam, Sabine, Farah Ben-Souilah, Marie-Hélène Lessard, Julien Chamberland, Véronique Perreault, Yves Pouliot, Steve Labrie y Alain Doyen. "Characterization of Chemical and Bacterial Compositions of Dairy Wastewaters". Dairy 2, n.º 2 (1 de abril de 2021): 179–90. http://dx.doi.org/10.3390/dairy2020016.
Texto completoMahendraker, V. y T. Viraraghavan. "Respirometric Evaluation of Comparative Biodegradability of Municipal and Petroleum Refinery Wastewaters". Water Quality Research Journal 31, n.º 2 (1 de mayo de 1996): 283–304. http://dx.doi.org/10.2166/wqrj.1996.017.
Texto completoMatsui, S., Y. Okawa y R. Ota. "Experience of 16 Years' Operation and Maintenance of the Fukashiba Industrial Wastewater Treatment Plant of the Kashima Petrochemical Complex – II. Biodegradability of 37 Organic Substances and 28 Process Wastewaters". Water Science and Technology 20, n.º 10 (1 de octubre de 1988): 201–10. http://dx.doi.org/10.2166/wst.1988.0138.
Texto completoTesis sobre el tema "Wastewater"
Atayol, Ahmet Avni Sofuoğlu Aysun. "Anaerobic co-treatability of olive mill wastewaters and domestic wastewater/". [s.l.]: [s.n.], 2003. http://library.iyte.edu.tr/tezler/master/cevremuh/T000239.pdf.
Texto completoWang, Y. "Wastewater minimisation and the design of wastewater treatment systems". Thesis, University of Manchester, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488391.
Texto completoPan, Xiaodi. "Radioisotopes in Domestic Wastewater and Their Fate in Wastewater Treatment". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1247.
Texto completoFain, Norm. "Wastewater - A Resource". Arizona-Nevada Academy of Science, 1991. http://hdl.handle.net/10150/296459.
Texto completoAs the Southwest United States grows and develops, one basic resource becomes a primary necessity for survival: Water. Currently, accepted sources are being consumed at a higher rate than nature replenishes them. This is necessitating the need to find and develop new water resources. In conjunction with the proper treatment and management, wastewater is a water resource, known as reuse. Properly managed, reused water can augment the available water supply. Primary applications include irrigation of agricultural and landscaped areas, surface water recreational areas, and groundwater recharge. These uses relieve the demands on the generally accepted water resources, thus increasing the net water supply. The required level of treatment varies with the intended reuse application. Treatment levels for reuse range from secondary to tertiary treatment systems. Some reuse applications provide additional treatment to the water. The reuser must assure that the treatment system and reuse application provide an equal or improved water quality to that of the receiving body of water. Regardless of the application, stringent operation and maintenance of the reuse system is essential. A well planned management program will minimize hazards associated with reuse of wastewater. This program is required to keep the liabilities of both the treatment plant and reuse site owners to a minimum. Without this, reuse is not a viable option. The underlying questions remain to determine the feasibility of reuse for a community: Does the water supply require augmentation to meet the demands of the future? Is the Owner willing to address and implement a diligent system management program?
Palmquist, Helena. "Hazardous substances in wastewater systems : a delicate issue for wastewater management". Licentiate thesis, Luleå tekniska universitet, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17510.
Texto completoGodkänd; 2001; 20070225 (ysko)
Heimel, Daniel Eric. "Anaerobic Co-digestion of Wastewater Treatment Pond Algae with Wastewater Sludge". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/440.
Texto completoBurgess, Joanna E. "Micronutrients for wastewater treatment". Thesis, Cranfield University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323932.
Texto completoMalandra, Lida 1975. "Biodegradation of winery wastewater". Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16385.
Texto completoENGLISH ABSTRACT: Large volumes of wastewater are generated annually during the grape harvest season from various processing and cleaning operations at wineries, distilleries and other wine-related industries. South African regulatory bodies dictate that wastewater should have a pH of 5.5 to 7.5 and a chemical oxygen demand (COD) lower than 75 mg/L. However, winery wastewater has a typical pH of 4 to 5 and a COD varying between 2 000 and 12 000 mg/L. Urban wineries channel the wastewater to local sewage treatment facilities and are often heavily fined for exceeding governmental requirements. Rural wineries usually have little or no treatment operations for their wastewater and it is often irrigated onto crops, which may result in environmental pollution and contamination of underground water resources. Various criteria are important in choosing a wastewater treatment system, such as an ecofriendly process that is flexible to withstand various concentration loads and characteristics, requiring low capital and operating costs, minimal personal attention and do not require too much land. In this study, a large variation in COD, pH and chemical composition of the winery wastewater was observed that could be related to varying factors such as the harvest load, operational procedures and grape variety. Wastewater from destemming and pressing operations contained higher concentrations of glucose, fructose and malic acid, which originated from the grape berries. The fermentable sugars (glucose and fructose) contributed to almost half of the COD with a smaller contribution from ethanol and acetic acid. The low pH can be ascribed to relative high concentrations of organic acids in the wastewater. The efficacy of biological treatment systems depends strongly on the ability of microorganisms to form biofilm communities that are able to degrade the organic compounds in the wastewater. Preliminary identification of microorganisms that naturally occur in winery wastewater indicated the presence of various bacterial and yeast species that could be effective in the biological treatment of the wastewater. When evaluated as pure cultures under aerobic conditions, some of the yeast isolates effectively reduced the COD of a synthetic wastewater, whereas the bacterial isolates were ineffective. The most effective yeast isolates were identified as Pichia rhodanensis, Kloeckera apiculata, Candida krusei and Saccharomyces cerevisiae. Our search for cost-effective biological treatment systems led to the evaluation of a Rotating Biological Contactor (RBC) for the treatment of winery wastewater. The RBC was evaluated on a laboratory scale with 10% (v/v) diluted grape juice and inoculated with a mixed microbial community isolated from winery wastewater. The results showed a reduction in the COD that improved with an extended retention time. Evaluation of the RBC on-site at a local winery during the harvest season resulted on average in a 41% decrease in COD and an increase of 0,75 pH units. RFLP analysis of the biofilm communities within the RBC confirmed a population shift in both the bacterial and fungal species during the evaluation period. The most dominant yeast isolates were identified with 18S rDNA sequencing as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum and Pichia membranifaciens. All these species are naturally associated with grapes and/or water and with the exception of Hanseniaspora uvarum, they are able to form either simple or elaborate pseudohyphae.
AFRIKAANSE OPSOMMING: Groot hoeveelhede afloopwater word jaarliks gedurende die druiwe-oestyd deur verskeie prosessering- en skoonmaakoperasies deur wynkelders, distilleer- en ander wynverwante industrieë gegenereer. Suid-Afrikaanse beheerliggame vereis dat afloopwater ‘n pH van 5.5 tot 7.5 en ‘n chemiese suurstofbehoefte (COD) van minder as 75 mg/l moet hê. Kelderafloopwater het egter gewoonlik ‘n pH van 4 tot 5 en ‘n COD van 2 000 tot 12 000 mg/L. Stedelike wynkelders voer die afloopwater na ń plaaslike rioolsuiweringsaanleg wat dikwels tot swaar boetes vir oortreding van die wetlike vereistes lei. Plattelandse wynkelders het gewoonlik min of geen behandelingsprosesse vir hul afloopwater nie en gebruik die water dikwels vir gewasbesproeiing, wat tot omgewingsbesoedeling en kontaminasie van ondergrondse waterbronne kan lei. Verskeie kriteria is belangrik in die keuse van ‘n waterbehandelingstelsel, byvoorbeeld ‘n omgewingsvriendelike proses wat verskillende konsentrasieladings en samestellings kan hanteer, ‘n lae kapitaal- en bedryfskoste en minimale persoonlike aandag vereis en min ruimte benodig. Hierdie studie het getoon dat kelderafloopwater ‘n groot variasie in COD, pH en chemiese samestelling het wat met wisselende faktore soos die oeslading, operasionele prosesse en selfs die druifkultivar verband kan hou. Afloopwater van ontstingeling- en parsoperasies het hoër konsentrasies glukose, fruktose en appelsuur wat van die druiwekorrels afkomstig is. Die fermenteerbare suikers (glukose en fruktose) dra tot amper 50% van die COD by, met ‘n kleiner bydrae deur etanol en asynsuur. Die lae pH kan grootliks aan organiese sure in die afloopwater toegeskryf word. Die effektiwiteit van biologiese behandelingstelsels steun sterk op die vermoë van mikroorganismes om biofilmgemeenskappe te vorm wat die organiese verbindings in die afloopwater kan afbreek. Voorlopige identifikasie van mikro-organismes wat natuurlik in wynafloopwater voorkom, het die teenwoordigheid van verskeie bakteriese en gisspesies aangedui. Evaluering van hierdie isolate onder aërobiese toestande het getoon dat sommige van die gis-isolate die COD van ‘n sintetiese afloopwater effektief kon verlaag, terwyl die bakteriese isolate oneffektief was. Die mees effektiewe gis-isolate is as Pichia rhodanensis, Kloeckera apiculata, Candida krusei en Saccharomyces cerevisiae geïdentifiseer. Ons soektog na ‘n koste-effektiewe biologiese behandelingsisteem het tot die evaluering van ‘n ‘Rotating Biological Contactor’ (RBC) vir die behandeling van afloopwater gelei. Die RBC is op laboratoriumskaal met 10% (v/v) verdunde druiwesap geëvalueer en met ‘n gemengde mikrobiese gemeenskap wat uit afloopwater geïsoleer is, innokuleer. Die resultate het ‘n verlaging in die COD getoon wat met ‘n langer retensietyd verbeter het. Evaluering van die RBC by ‘n plaaslike wynkelder gedurende die oesseisoen het gemiddeld ‘n verlaging van 41% in die COD en ‘n verhoging van 0,75 pH eenhede getoon. RPLP analise van die biofilmgemeenskappe in die RBC het ‘n bevolkingsverskuiwing in beide die bakteriese en swamspesies aangetoon. Die mees dominante gisspesies is met 18S rDNA volgordebepaling as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum en Pichia membranifaciens geïdentifiseer. Al hierdie spesies word gewoonlik met druiwe en/of water geassosieer en is, met die uitsondering van Hanseniaspora uvarum, in staat om òf eenvoudige òf komplekse pseudohife te vorm.
Veijola, T. (Tommi). "Domestic wastewater heat recovery". Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201704271600.
Texto completoAbdel-Halim, Walid Sayed. "Anaerobic municipal wastewater treatment /". Hannover : Inst. für Siedlungswasserwirtschaft und Abfalltechnik, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014189251&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Texto completoLibros sobre el tema "Wastewater"
Agency, Ireland Environmental Protection. Wastewater treatment manuals: Characterisation of industrial wastewaters. Wexford: Environmental Protection Agency, 1998.
Buscar texto completoDrechsel, Pay, Manzoor Qadir y Dennis Wichelns, eds. Wastewater. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6.
Texto completoSally, Morgan. Wastewater. Norh Mankato, MN: Smart Apple Media, 2008.
Buscar texto completoWastewater bacteria. Hoboken, NJ: Wiley, 2006.
Buscar texto completoBitton, Gabriel. Wastewater microbiology. 4a ed. Hoboken, N.J: Wiley-Blackwell, 2011.
Buscar texto completoShah, Maulin P. Wastewater Treatment. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057.
Texto completoBitton, Gabriel. Wastewater microbiology. New York: Wiley-Liss, 1994.
Buscar texto completoGerardi, Michael H. Wastewater Bacteria. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471979910.
Texto completoGerardi, Michael H. y Mel C. Zimmerman. Wastewater Pathogens. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471710431.
Texto completoBitton, Gabriel. Wastewater Microbiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471717967.
Texto completoCapítulos de libros sobre el tema "Wastewater"
Kim, In S., Byung Soo Oh, Seokmin Yoon, Hokyong Shon, Sangho Lee y Seungkwan Hong. "Wastewater Wastewater Reclamation wastewater reclamation". En Encyclopedia of Sustainability Science and Technology, 11873–91. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_263.
Texto completoVesley, Donald. "Wastewater". En Human Health and the Environment, 33–39. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5434-6_4.
Texto completoHossain, Md Faruque. "Wastewater". En Global Sustainability in Energy, Building, Infrastructure, Transportation, and Water Technology, 237–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62376-0_13.
Texto completoBurroughs, Richard. "Wastewater". En Coastal Governance, 30–42. Washington, DC: Island Press/Center for Resource Economics, 2011. http://dx.doi.org/10.5822/978-1-61091-016-3_3.
Texto completoKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder y Shripad K. Nimbhorkar. "Wastewater". En Wastewater Engineering, 21–49. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-2.
Texto completoIslam, Md Didarul, Meem Muhtasim Mahdi, Md Arafat Hossain y Md Minhazul Abedin. "Biological Wastewater Treatment Plants (BWWTPs) for Industrial Wastewaters". En Wastewater Treatment, 139–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-12.
Texto completoWichelns, Dennis, Pay Drechsel y Manzoor Qadir. "Wastewater: Economic Asset in an Urbanizing World". En Wastewater, 3–14. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_1.
Texto completoOtoo, Miriam, Javier Mateo-Sagasta y Ganesha Madurangi. "Economics of Water Reuse for Industrial, Environmental, Recreational and Potable Purposes". En Wastewater, 169–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_10.
Texto completoRao, Krishna, Munir A. Hanjra, Pay Drechsel y George Danso. "Business Models and Economic Approaches Supporting Water Reuse". En Wastewater, 195–216. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_11.
Texto completoGebrezgabher, Solomie, Krishna Rao, Munir A. Hanjra y Francesc Hernández-Sancho. "Business Models and Economic Approaches for Recovering Energy from Wastewater and Fecal Sludge". En Wastewater, 217–45. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_12.
Texto completoActas de conferencias sobre el tema "Wastewater"
Ziganshina, E. E., S. S. Bulynina y A. M. Ziganshin. "PRODUCTIVITY OF CHLORELLA DURING GROWTH IN DOMESTIC WASTEWATER". En X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-80.
Texto completoWu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang y Jinbao Wan. "Wastewater treatment processes for industrial organosilicon wastewater". En 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.
Texto completoOnaizi, Sagheer A. "Enzymatic Treatment of Phenolic Wastewater: Effects of Salinity and Biosurfactant Addition". En International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21349-ms.
Texto completoVasiliu, Cornelia Cretiu, Dale Pierce y Kelly Bertrand. "Challenging Wastewater Treatment". En International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157615-ms.
Texto completoSchutze, M. "XML in wastewater". En Developments in Control in the Water Industry. IEE, 2003. http://dx.doi.org/10.1049/ic:20030258.
Texto completoAlmeida, Antonio V. "Wastewater Rehabilitation in a NIMBY Environment: The Lake Arlington Wastewater Interceptor". En Pipeline Division Specialty Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40854(211)93.
Texto completoDauknys, Regimantas y Aušra Mažeikienė. "Research of Wastewater Tertiary Treatment". En Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.075.
Texto completoBilstad, T., E. Espedal, A. H. Haaland y M. Madland. "Ultrafiltration of Oily Wastewater". En SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27136-ms.
Texto completoMustata, Dragos. "ADIPUR WASTEWATER TREATMENT OPTIMIZATION". En 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.006.
Texto completoRoper, Alexander M. y Shannon L. Isovitsch Parks. "Phosphorus Removal from Wastewater". En World Environmental and Water Resources Congress 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482360.024.
Texto completoInformes sobre el tema "Wastewater"
Torrey, David A. Hydropower from Wastewater. Office of Scientific and Technical Information (OSTI), diciembre de 2011. http://dx.doi.org/10.2172/1032379.
Texto completoPedersen, Joel A., Moshe Shenker, Krishnapuram G. Karthikeyan, Benny Chefetz, Jorge Tarchitzky y Curtis Hedman. Uptake of wastewater-derived micropollutants by plants irrigated with reclaimed wastewater. United States Department of Agriculture, enero de 2014. http://dx.doi.org/10.32747/2014.7600011.bard.
Texto completoHirzel, D. R. PFP Wastewater Sampling Facility. Office of Scientific and Technical Information (OSTI), mayo de 1995. http://dx.doi.org/10.2172/80949.
Texto completoOgden, K. L. Bioremediation of wastewater containing RDX. Office of Scientific and Technical Information (OSTI), octubre de 1994. http://dx.doi.org/10.2172/369676.
Texto completovon Sperling, Marcos. Urban Wastewater Treatment in Brazil. Editado por Alejandra Perroni. Inter-American Development Bank, agosto de 2016. http://dx.doi.org/10.18235/0000397.
Texto completoCoppola, Edward N. y Jeffery Rine. Deployable Wastewater Treatment Technology Evaluation. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2002. http://dx.doi.org/10.21236/ada416250.
Texto completoHolland, Robert C. Site Sustainability Plan- wastewater input. Office of Scientific and Technical Information (OSTI), noviembre de 2019. http://dx.doi.org/10.2172/1574247.
Texto completoGrow, Ann E., Michael S. Deal, Johanna L. Claycomb y Laurie L. Wood. Navy Wastewater MOP-UP (trademark). Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2003. http://dx.doi.org/10.21236/ada419363.
Texto completoLopez-Ruiz, Juan, Nickolas Riedel, Bhanupriya Boruah, Swanand Sadashiv Bhatwadekar, Lyndi Strange y Shuyun Li. Low-temperature electrochemical wastewater oxidation. Office of Scientific and Technical Information (OSTI), octubre de 2023. http://dx.doi.org/10.2172/2332860.
Texto completoTang, CheeYee. Water and Wastewater Project Architecture:. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.tn.2283.ipd.
Texto completo