Artículos de revistas sobre el tema "Wake-oscillator model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Wake-oscillator model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hagiwara, Tsuyoshi. "A Comparison between Wake Oscillator Model and Fluids Force Coefficients". Proceedings of the Fluids engineering conference 2000 (2000): 76. http://dx.doi.org/10.1299/jsmefed.2000.76.
Texto completoM, Muthaiah, Ragul Senthilkumar y Varunkumar S. "Numerical investigation of thermo-acoustic instability in a model afterburner with a simplified model for observed lock-in Phenomena". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, n.º 3 (1 de febrero de 2023): 4088–99. http://dx.doi.org/10.3397/in_2022_0585.
Texto completoKurushina, Victoria y Ekaterina Pavlovskaia. "Fluid nonlinearities effect on wake oscillator model performance". MATEC Web of Conferences 148 (2018): 04002. http://dx.doi.org/10.1051/matecconf/201814804002.
Texto completoPoore, Aubrey B., Eusebius J. Doedel y Jack E. Cermak. "Dynamics of the Iwan-Blevins wake oscillator model". International Journal of Non-Linear Mechanics 21, n.º 4 (enero de 1986): 291–302. http://dx.doi.org/10.1016/0020-7462(86)90036-3.
Texto completoZhang, Xiulin, Xu Zhang, Shuni Zhou, Wenzha Yang, Liangbin Xu, Lina Yi, Gengqing Tian, Yong Ma, Yuheng Hao y Wenchi Ni. "A Modified Wake Oscillator Model for the Cross-Flow Vortex-Induced Vibration of Rigid Cylinders with Low Mass and Damping Ratios". Journal of Marine Science and Engineering 11, n.º 2 (17 de enero de 2023): 235. http://dx.doi.org/10.3390/jmse11020235.
Texto completoKurushina, Victoria, Andrey Postnikov, Guilherme Franzini y Ekaterina Pavlovskaia. "Optimization of the Wake Oscillator for Transversal VIV". Journal of Marine Science and Engineering 10, n.º 2 (20 de febrero de 2022): 293. http://dx.doi.org/10.3390/jmse10020293.
Texto completoKIKITSU, Hitomitsu, Yasuo OKUDA y Jun KANDA. "NUMERICAL EVALUATION OF INTERACTION PHENOMENON BY USING WAKE OSCILLATOR MODEL". Journal of Structural and Construction Engineering (Transactions of AIJ) 73, n.º 624 (2008): 211–18. http://dx.doi.org/10.3130/aijs.73.211.
Texto completoPostnikov, Andrey, Ekaterina Pavlovskaia y Marian Wiercigroch. "2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations". International Journal of Mechanical Sciences 127 (julio de 2017): 176–90. http://dx.doi.org/10.1016/j.ijmecsci.2016.05.019.
Texto completoAlon Tzezana, Gali y Kenneth S. Breuer. "Thrust, drag and wake structure in flapping compliant membrane wings". Journal of Fluid Mechanics 862 (15 de enero de 2019): 871–88. http://dx.doi.org/10.1017/jfm.2018.966.
Texto completoHussin, W. N. W., F. N. Harun, M. H. Mohd y M. A. A. Rahman. "Analytical modelling prediction by using wake oscillator model for vortex-induced vibrations". JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES 11, n.º 4 (30 de diciembre de 2017): 3116–28. http://dx.doi.org/10.15282/jmes.11.4.2017.14.0280.
Texto completoXu, Wan-Hai, Xiao-Hui Zeng y Ying-Xiang Wu. "High aspect ratio (L/D) riser VIV prediction using wake oscillator model". Ocean Engineering 35, n.º 17-18 (diciembre de 2008): 1769–74. http://dx.doi.org/10.1016/j.oceaneng.2008.08.015.
Texto completoFujiwara, Toshifumi. "VIM Time-domain Simulation on a Semi-submersible Floater Using Wake Oscillator Model". Journal of the Japan Society of Naval Architects and Ocean Engineers 27 (2018): 49–55. http://dx.doi.org/10.2534/jjasnaoe.27.49.
Texto completoMathelin, L. y E. de Langre. "Vortex-induced vibrations and waves under shear flow with a wake oscillator model". European Journal of Mechanics - B/Fluids 24, n.º 4 (julio de 2005): 478–90. http://dx.doi.org/10.1016/j.euromechflu.2004.12.005.
Texto completoGe, Fei, Wei Lu, Lei Wang y You-Shi Hong. "Shear flow induced vibrations of long slender cylinders with a wake oscillator model". Acta Mechanica Sinica 27, n.º 3 (junio de 2011): 330–38. http://dx.doi.org/10.1007/s10409-011-0460-x.
Texto completoFarshidianfar, A. y N. Dolatabadi. "Modified higher-order wake oscillator model for vortex-induced vibration of circular cylinders". Acta Mechanica 224, n.º 7 (12 de febrero de 2013): 1441–56. http://dx.doi.org/10.1007/s00707-013-0819-0.
Texto completoKOBAYASHI, Yukinori, Eisuke KAMIDE y Yohei HOSHINO. "Disturbance Cancellation Control and Coupling Vibration of an Elastic Supported Cylinder and Wake Oscillator (Improvement of Control Simulation by Using van der Pol Wake Oscillator Model)". Transactions of the Japan Society of Mechanical Engineers Series C 72, n.º 716 (2006): 1109–14. http://dx.doi.org/10.1299/kikaic.72.1109.
Texto completoSu, Zhi Bin y Sheng Nan Sun. "Vortex-Induced Dynamic Response of Submerged Floating Tunnel Tether Based on Wake Oscillator Model". Advanced Materials Research 919-921 (abril de 2014): 1262–65. http://dx.doi.org/10.4028/www.scientific.net/amr.919-921.1262.
Texto completoA Rahman, Mohd Asamudin, Wan Norazam Wan Hussin, Mohd Hairil Mohd, Fatimah Noor Harun, Lee Kee Quen y Jeom Kee Paik. "Modified wake oscillator model for vortex-induced motion prediction of low aspect ratio structures". Ships and Offshore Structures 14, sup1 (20 de marzo de 2019): 335–43. http://dx.doi.org/10.1080/17445302.2019.1593308.
Texto completoXu, Wan-hai, Ying-xiang Wu, Xiao-hui Zeng, Xing-fu Zhong y Jian-xing Yu. "A New Wake Oscillator Model for Predicting Vortex Induced Vibration of a Circular Cylinder". Journal of Hydrodynamics 22, n.º 3 (junio de 2010): 381–86. http://dx.doi.org/10.1016/s1001-6058(09)60068-8.
Texto completoLow, Ying Min y Narakorn Srinil. "VIV fatigue reliability analysis of marine risers with uncertainties in the wake oscillator model". Engineering Structures 106 (enero de 2016): 96–108. http://dx.doi.org/10.1016/j.engstruct.2015.10.004.
Texto completoGao, Yun, Zhuangzhuang Zhang, Ganghui Pan, Geng Peng, Lei Liu y Wei Wang. "Three-dimensional vortex-induced vibrations of a circular cylinder predicted using a wake oscillator model". Marine Structures 80 (noviembre de 2021): 103078. http://dx.doi.org/10.1016/j.marstruc.2021.103078.
Texto completoNakao, Mitsuyuki, Keisuke Yamamoto, Kazuhiro Nakamura, Norihiro Katayama y Mitsuaki Yamamoto. "A circadian system model with feedback of cross-correlation between sleep-wake rhythm and oscillator". Psychiatry and Clinical Neurosciences 55, n.º 3 (junio de 2001): 295–97. http://dx.doi.org/10.1046/j.1440-1819.2001.00865.x.
Texto completoXu, Kun, Yaojun Ge y Dongchang Zhang. "Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action". Journal of Wind Engineering and Industrial Aerodynamics 136 (enero de 2015): 192–200. http://dx.doi.org/10.1016/j.jweia.2014.11.002.
Texto completoMi, L. y O. Gottlieb. "Asymptotic model-based estimation of a wake oscillator for a tethered sphere in uniform flow". Journal of Fluids and Structures 54 (abril de 2015): 361–89. http://dx.doi.org/10.1016/j.jfluidstructs.2014.11.012.
Texto completoMannini, Claudio. "Incorporation of turbulence in a nonlinear wake-oscillator model for the prediction of unsteady galloping response". Journal of Wind Engineering and Industrial Aerodynamics 200 (mayo de 2020): 104141. http://dx.doi.org/10.1016/j.jweia.2020.104141.
Texto completoGao, Yun, Zhi Zong, Li Zou y Shu Takagi. "Vortex-induced vibrations and waves of a long circular cylinder predicted using a wake oscillator model". Ocean Engineering 156 (mayo de 2018): 294–305. http://dx.doi.org/10.1016/j.oceaneng.2018.03.034.
Texto completoQu, Yang, Piguang Wang, Shixiao Fu y Mi Zhao. "Numerical study on vortex-induced vibrations of a flexible cylinder subjected to multi-directional flows". Physics of Fluids 35, n.º 3 (marzo de 2023): 037104. http://dx.doi.org/10.1063/5.0138063.
Texto completoArmin, Milad, Sandy Day, Madjid Karimirad y Mahdi Khorasanchi. "On the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental results". Nonlinear Dynamics 104, n.º 4 (junio de 2021): 3517–31. http://dx.doi.org/10.1007/s11071-021-06527-8.
Texto completoLin, Heng, Yiqiang Xiang, Yunshen Yang y Chaoqi Gao. "Fluid–Vehicle–Tunnel Coupled Vibration Analysis of a Submerged Floating Tunnel Based on a Wake Oscillator Model". Journal of Waterway, Port, Coastal, and Ocean Engineering 148, n.º 1 (enero de 2022): 04021037. http://dx.doi.org/10.1061/(asce)ww.1943-5460.0000677.
Texto completoFontecave Jallon, Julie, Enas Abdulhay, Pascale Calabrese, Pierre Baconnier y Pierre-Yves Gumery. "A model of mechanical interactions between heart and lungs". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, n.º 1908 (13 de diciembre de 2009): 4741–57. http://dx.doi.org/10.1098/rsta.2009.0137.
Texto completoLin, Lin y Yan Ying Wang. "Nonlinear Analysis of Vortex Induced Dynamic Response of Marine Riser". Applied Mechanics and Materials 353-356 (agosto de 2013): 2736–40. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.2736.
Texto completoGander, P. H., R. E. Kronauer y R. C. Graeber. "Phase shifting two coupled circadian pacemakers: implications for jet lag". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 249, n.º 6 (1 de diciembre de 1985): R704—R719. http://dx.doi.org/10.1152/ajpregu.1985.249.6.r704.
Texto completoQu, Yang y Andrei V. Metrikine. "A single van der pol wake oscillator model for coupled cross-flow and in-line vortex-induced vibrations". Ocean Engineering 196 (enero de 2020): 106732. http://dx.doi.org/10.1016/j.oceaneng.2019.106732.
Texto completoViolette, R., E. de Langre y J. Szydlowski. "Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments". Computers & Structures 85, n.º 11-14 (junio de 2007): 1134–41. http://dx.doi.org/10.1016/j.compstruc.2006.08.005.
Texto completoGao, Xi-feng, Wu-de Xie, Wan-hai Xu, Yu-chuan Bai y Hai-tao Zhu. "A Novel Wake Oscillator Model for Vortex-Induced Vibrations Prediction of A Cylinder Considering the Influence of Reynolds Number". China Ocean Engineering 32, n.º 2 (abril de 2018): 132–43. http://dx.doi.org/10.1007/s13344-018-0015-z.
Texto completoMathai, Varghese, Laura A. W. M. Loeffen, Timothy T. K. Chan y Sander Wildeman. "Dynamics of heavy and buoyant underwater pendulums". Journal of Fluid Mechanics 862 (16 de enero de 2019): 348–63. http://dx.doi.org/10.1017/jfm.2018.867.
Texto completoChen, Jie y Qiu-Sheng Li. "Nonlinear Dynamics of a Fluid–Structure Coupling Model for Vortex-Induced Vibration". International Journal of Structural Stability and Dynamics 19, n.º 07 (26 de junio de 2019): 1950071. http://dx.doi.org/10.1142/s0219455419500718.
Texto completoQu, Yang, Shixiao Fu, Zhenhui Liu, Yuwang Xu y Jiayang Sun. "Numerical study on the characteristics of vortex-induced vibrations of a small-scale subsea jumper using a wake oscillator model". Ocean Engineering 243 (enero de 2022): 110028. http://dx.doi.org/10.1016/j.oceaneng.2021.110028.
Texto completoPrethiv Kumar, R. y S. Nallayarasu. "VIV response of risers with large aspect ratio and low rigidity using a numerical scheme based on wake oscillator model". Applied Ocean Research 118 (enero de 2022): 103011. http://dx.doi.org/10.1016/j.apor.2021.103011.
Texto completoFehér, Rafael y Juan Julca Avila. "Vortex-induced vibrations model with 2 degrees of freedom of rigid cylinders near a plane boundary based on wake oscillator". Ocean Engineering 234 (agosto de 2021): 108938. http://dx.doi.org/10.1016/j.oceaneng.2021.108938.
Texto completoQu, Yang, Shixiao Fu, Yuwang Xu y Jun Huang. "Application of a modified wake oscillator model to vortex-induced vibration of a free-hanging riser subjected to vessel motion". Ocean Engineering 253 (junio de 2022): 111165. http://dx.doi.org/10.1016/j.oceaneng.2022.111165.
Texto completoXu, Wan-Hai, Jie Du, Jian-Xing Yu y Jing-Cheng Li. "Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region". Chinese Physics Letters 28, n.º 12 (diciembre de 2011): 124704. http://dx.doi.org/10.1088/0256-307x/28/12/124704.
Texto completoFarshidianfar, A. y H. Zanganeh. "A modified wake oscillator model for vortex-induced vibration of circular cylinders for a wide range of mass-damping ratio". Journal of Fluids and Structures 26, n.º 3 (abril de 2010): 430–41. http://dx.doi.org/10.1016/j.jfluidstructs.2009.11.005.
Texto completoSong, Wen, Chenshi Yang, Xiaoyi Zhang y Yongdong Li. "Mathematical Modelling and Dynamic Analysis of a Direct-Acting Relief Valve Based on Fluid-Structure Coupling Analysis". Shock and Vibration 2021 (10 de abril de 2021): 1–11. http://dx.doi.org/10.1155/2021/5581684.
Texto completoFeng, Y. L., D. Y. Chen, S. W. Li, Q. Xiao y W. Li. "Vortex-induced vibrations of flexible cylinders predicted by wake oscillator model with random components of mean drag coefficient and lift coefficient". Ocean Engineering 251 (mayo de 2022): 110960. http://dx.doi.org/10.1016/j.oceaneng.2022.110960.
Texto completoChen, Cong, Niccolo Wieczorek, Julian Unglaub y Klaus Thiele. "Extension of wake oscillator model for continuous system and application to the VIV-galloping instability of a bridge during launching phase". Journal of Wind Engineering and Industrial Aerodynamics 218 (noviembre de 2021): 104769. http://dx.doi.org/10.1016/j.jweia.2021.104769.
Texto completoDoan, Viet-Phan y Yoshiki Nishi. "Modeling of fluid–structure interaction for simulating vortex-induced vibration of flexible riser: finite difference method combined with wake oscillator model". Journal of Marine Science and Technology 20, n.º 2 (18 de septiembre de 2014): 309–21. http://dx.doi.org/10.1007/s00773-014-0284-z.
Texto completoGao, Guanghai, Yunjing Cui y Xingqi Qiu. "Prediction of Vortex-Induced Vibration Response of Deep Sea Top-Tensioned Riser in Sheared Flow Considering Parametric Excitations". Polish Maritime Research 27, n.º 2 (1 de junio de 2020): 48–57. http://dx.doi.org/10.2478/pomr-2020-0026.
Texto completoYang, Wenwu, Xueping Chang y Ruyi Gou. "Nonlinear vortex-induced vibration dynamics of a flexible pipe conveying two-phase flow". Advances in Mechanical Engineering 11, n.º 10 (octubre de 2019): 168781401988192. http://dx.doi.org/10.1177/1687814019881924.
Texto completoGao, Yun, Lei Liu, Ganghui Pan, Shixiao Fu, Shenglin Chai y Chen Shi. "Numerical prediction of vortex-induced vibrations of a long flexible riser with an axially varying tension based on a wake oscillator model". Marine Structures 85 (septiembre de 2022): 103265. http://dx.doi.org/10.1016/j.marstruc.2022.103265.
Texto completo