Literatura académica sobre el tema "Wake-oscillator model"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Wake-oscillator model".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Wake-oscillator model"

1

Hagiwara, Tsuyoshi. "A Comparison between Wake Oscillator Model and Fluids Force Coefficients." Proceedings of the Fluids engineering conference 2000 (2000): 76. http://dx.doi.org/10.1299/jsmefed.2000.76.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

M, Muthaiah, Ragul Senthilkumar, and Varunkumar S. "Numerical investigation of thermo-acoustic instability in a model afterburner with a simplified model for observed lock-in Phenomena." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, no. 3 (2023): 4088–99. http://dx.doi.org/10.3397/in_2022_0585.

Texto completo
Resumen
Thermoacoustic oscillations in a gas turbine afterburner are numerically investigated using CFD. A simplified 2-dimensional axisymmetric afterburner with bluff-body stabilized flame is considered in the investigation. Occurrences of both low and high-frequency thermo-acoustic oscillations in the afterburner chamber are observed at specific fuel flow rates. The flow field from the CFD shows the bluff-body vortex shedding frequency to lock-in with the acoustics of the chamber during the thermo-acoustic oscillations. The synchronization and lock-in of bluff-body wake with chamber acoustics happen with increase in fuel injection rates resulting in thermoacoustic coupling. The Proper Orthogonal Decomposition of the flow field revealed the presence of chamber acoustics in the pressure field confirming the coupling. Then a simplified mathematical model based on the van-der Pol oscillator is attempted to reproduce the observed lock-in behavior of the bluff-body wake. The chamber acoustic field is considered as the forcing term for the simplified oscillator. The oscillator model qualitatively captures the synchronization of the flame-holder wake oscillations with the chamber acoustics. This model could be extended to combustors with bluff-body wake in predicting the thermo-acoustic oscillations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kurushina, Victoria, and Ekaterina Pavlovskaia. "Fluid nonlinearities effect on wake oscillator model performance." MATEC Web of Conferences 148 (2018): 04002. http://dx.doi.org/10.1051/matecconf/201814804002.

Texto completo
Resumen
Vortex-induced vibrations (VIV) need to be accounted for in the design of marine structures such as risers and umbilicals. If a resonance state of the slender structure develops due to its interaction with the surrounding fluid flow, the consequences can be severe resulting in the accelerated fatigue and structural damage. Wake oscillator models allow to estimate the fluid force acting on the structure without complex and time consuming CFD analysis of the fluid domain. However, contemporary models contain a number of empirical coeffcients which are required to be tuned using experimental data. This is often left for the future work with the opened question on how to calibrate a model for a wide range of cases and find out what is working and is not. The current research is focused on the problem of the best choice of the fluid nonlinearities for the base wake oscillator model [1] in order to improve the accuracy of prediction for the cases with mass ratios around 6.0. The paper investigates six nonlinear damping types for two fluid equations of the base model. The calibration is conducted using the data by Stappenbelt and Lalji [2] for 2 degrees-of-freedom rigid structure for mass ratio 6.54. The conducted analysis shows that predicted in-line and cross-flow displacements are more accurate if modelled separately using different damping types than using only one version of the model. The borders of application for each found option in terms of mass ratio are discussed in this work, and appropriate recommendations are provided.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Poore, Aubrey B., Eusebius J. Doedel, and Jack E. Cermak. "Dynamics of the Iwan-Blevins wake oscillator model." International Journal of Non-Linear Mechanics 21, no. 4 (1986): 291–302. http://dx.doi.org/10.1016/0020-7462(86)90036-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Xiulin, Xu Zhang, Shuni Zhou, et al. "A Modified Wake Oscillator Model for the Cross-Flow Vortex-Induced Vibration of Rigid Cylinders with Low Mass and Damping Ratios." Journal of Marine Science and Engineering 11, no. 2 (2023): 235. http://dx.doi.org/10.3390/jmse11020235.

Texto completo
Resumen
The classical wake oscillator model is capable of predicting the vortex-induced vibration response of a cylinder at high mass-damping ratios, but it fails to perform satisfactorily at low mass-damping ratios. A modified wake oscillator model is presented in this paper. The modification method involves analyzing the variation law of the add mass coefficient of the cylinder versus reduced velocity and expressing the reference lift coefficient CL0 as a function of the add mass coefficient. The modified wake oscillator model has been demonstrated to have better accuracy in capturing maximum amplitudes and flow velocity at low mass-damping ratios. However, the modified model at present form is unable to accurately predict the vortex-induced vibration response at high damping ratios. The purpose of this paper is to propose a new modification idea. In order to achieve better results when applying this modification idea to particular objects, it may be necessary to first understand the response law of these kinds of objects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kurushina, Victoria, Andrey Postnikov, Guilherme Franzini, and Ekaterina Pavlovskaia. "Optimization of the Wake Oscillator for Transversal VIV." Journal of Marine Science and Engineering 10, no. 2 (2022): 293. http://dx.doi.org/10.3390/jmse10020293.

Texto completo
Resumen
Vibrations of slender structures associated with the external flow present a design challenge for the energy production systems placed in the marine environment. The current study explores the accuracy of the semi-empirical wake oscillator models for vortex-induced vibrations (VIV) based on the optimization of (a) the damping term and (b) empirical coefficients in the fluid equation. This work investigates the effect of ten fluid damping variations, from the classic van der Pol to more sophisticated fifth-order terms, and prediction of the simplified case of the VIV of transversally oscillating rigid structures provides an opportunity for an extended, comprehensive comparison of the performance of tuned models. A constrained nonlinear minimization algorithm in MATLAB is applied to calibrate considered models using the published experimental data, and the weighted objective function is formulated for three different mass ratios. Comparison with several sources of published experimental data for cross-flow oscillations confirms the model accuracy in the mass ratio range. The study indicates the advantageous performance of the models tuned with the medium mass ratio data and highlights some advantages of the Krenk–Nielsen wake oscillator.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

KIKITSU, Hitomitsu, Yasuo OKUDA, and Jun KANDA. "NUMERICAL EVALUATION OF INTERACTION PHENOMENON BY USING WAKE OSCILLATOR MODEL." Journal of Structural and Construction Engineering (Transactions of AIJ) 73, no. 624 (2008): 211–18. http://dx.doi.org/10.3130/aijs.73.211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Postnikov, Andrey, Ekaterina Pavlovskaia, and Marian Wiercigroch. "2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations." International Journal of Mechanical Sciences 127 (July 2017): 176–90. http://dx.doi.org/10.1016/j.ijmecsci.2016.05.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Alon Tzezana, Gali, and Kenneth S. Breuer. "Thrust, drag and wake structure in flapping compliant membrane wings." Journal of Fluid Mechanics 862 (January 15, 2019): 871–88. http://dx.doi.org/10.1017/jfm.2018.966.

Texto completo
Resumen
We present a theoretical framework to characterize the steady and unsteady aeroelastic behaviour of compliant membrane wings under different conditions. We develop an analytic model based on thin airfoil theory coupled with a membrane equation. Adopting a numerical solution to the model equations, we study the effects of wing compliance, inertia and flapping kinematics on aerodynamic performance. The effects of added mass and fluid damping on a flapping membrane are quantified using a simple damped oscillator model. As the flapping frequency is increased, membranes go through a transition from thrust to drag around the resonant frequency, and this transition is earlier for more compliant membranes. The wake also undergoes a transition from a reverse von Kármán wake to a traditional von Kármán wake. The wake transition frequency is predicted to be higher than the thrust–drag transition frequency for highly compliant wings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hussin, W. N. W., F. N. Harun, M. H. Mohd, and M. A. A. Rahman. "Analytical modelling prediction by using wake oscillator model for vortex-induced vibrations." JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES 11, no. 4 (2017): 3116–28. http://dx.doi.org/10.15282/jmes.11.4.2017.14.0280.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía