Literatura académica sobre el tema "Viterbo conjecture"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Viterbo conjecture".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Viterbo conjecture"
Abbondandolo, Alberto, Barney Bramham, Umberto L. Hryniewicz y Pedro A. S. Salomão. "Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere". Compositio Mathematica 154, n.º 12 (6 de noviembre de 2018): 2643–80. http://dx.doi.org/10.1112/s0010437x18007558.
Texto completoBalitskiy, Alexey. "Equality Cases in Viterbo’s Conjecture and Isoperimetric Billiard Inequalities". International Mathematics Research Notices 2020, n.º 7 (19 de abril de 2018): 1957–78. http://dx.doi.org/10.1093/imrn/rny076.
Texto completoKarasev, Roman y Anastasia Sharipova. "Viterbo’s Conjecture for Certain Hamiltonians in Classical Mechanics". Arnold Mathematical Journal 5, n.º 4 (diciembre de 2019): 483–500. http://dx.doi.org/10.1007/s40598-019-00129-4.
Texto completoValverde-Albacete, Francisco J. y Carmen Peláez-Moreno. "The Rényi Entropies Operate in Positive Semifields". Entropy 21, n.º 8 (8 de agosto de 2019): 780. http://dx.doi.org/10.3390/e21080780.
Texto completoGutt, Jean, Michael Hutchings y Vinicius G. B. Ramos. "Examples around the strong Viterbo conjecture". Journal of Fixed Point Theory and Applications 24, n.º 2 (20 de abril de 2022). http://dx.doi.org/10.1007/s11784-022-00949-6.
Texto completoShelukhin, Egor. "Viterbo conjecture for Zoll symmetric spaces". Inventiones mathematicae, 7 de julio de 2022. http://dx.doi.org/10.1007/s00222-022-01124-x.
Texto completoShelukhin, Egor. "Symplectic cohomology and a conjecture of Viterbo". Geometric and Functional Analysis, 31 de octubre de 2022. http://dx.doi.org/10.1007/s00039-022-00619-2.
Texto completoEdtmair, O. "Disk-Like Surfaces of Section and Symplectic Capacities". Geometric and Functional Analysis, 16 de julio de 2024. http://dx.doi.org/10.1007/s00039-024-00689-4.
Texto completoAbbondandolo, Alberto y Gabriele Benedetti. "On the local systolic optimality of Zoll contact forms". Geometric and Functional Analysis, 3 de febrero de 2023. http://dx.doi.org/10.1007/s00039-023-00624-z.
Texto completoRudolf, Daniel. "Viterbo’s conjecture as a worm problem". Monatshefte für Mathematik, 18 de diciembre de 2022. http://dx.doi.org/10.1007/s00605-022-01806-x.
Texto completoTesis sobre el tema "Viterbo conjecture"
Dardennes, Julien. "Non-convexité symplectique des domaines toriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES102.
Texto completoConvexity plays a special role in symplectic geometry, but it is not a notion that is invariant by symplectomorphism. In a seminal work, Hofer, Wysocki and Zehnder showed that any strongly convex domain is dynamically convex, a notion that is invariant by symplectomorphism. For more than twenty years, the existence or not of dynamically convex domains that are not symplectomorphic to a convex domain has remained an open question. Recently, Chaidez and Edtmair answered this question in dimension 4. They established a "quantitative" criterion of symplectic convexity and constructed dynamically convex domains that do not satisfy this criterion. In this thesis, we use this criterion to construct new examples of such domains in dimension 4, which have the additional property of being toric. Moreover, we estimate the constants involved in this criterion. This work in collaboration with Jean Gutt and Jun Zhang was later used by Chaidez and Edtmair to solve the initial question in all dimensions. Furthermore, in collaboration with Jean Gutt, Vinicius G.B.Ramos and Jun Zhang, we study the distance from dynamically convex domains to symplectically convex domains. We show that in dimension 4, this distance is arbitrarily large with respect to a symplectic analogue of the Banach-Mazur distance. Additionally, we independently reprove the existence of dynamically convex domains that are not symplectically convex in dimension 4
Capítulos de libros sobre el tema "Viterbo conjecture"
Hofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder y Felix Schlenk. "Examples around the strong Viterbo conjecture". En Symplectic Geometry, 677–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_22.
Texto completoEkeland, Ivar. "Viterbo’s Proof of Weinstein’s Conjecture in R 2n". En Periodic Solutions of Hamiltonian Systems and Related Topics, 131–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3933-2_11.
Texto completo