Literatura académica sobre el tema "Visual suppression"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Visual suppression".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Visual suppression"
Volkmann, Frances C. "Human visual suppression". Vision Research 26, n.º 9 (enero de 1986): 1401–16. http://dx.doi.org/10.1016/0042-6989(86)90164-1.
Texto completoKim, Back-Soon, Ku-Soo Guen, Eui-Kyung Bang, Eui-Kyung Goh y Kyong-Myong Chon. "Visuaul suppression test in normal subjects". Journal of Clinical Otolaryngology Head and Neck Surgery 2, n.º 1 (mayo de 1991): 51–57. http://dx.doi.org/10.35420/jcohns.1991.2.1.51.
Texto completoDeAngelis, G. C., J. G. Robson, I. Ohzawa y R. D. Freeman. "Organization of suppression in receptive fields of neurons in cat visual cortex". Journal of Neurophysiology 68, n.º 1 (1 de julio de 1992): 144–63. http://dx.doi.org/10.1152/jn.1992.68.1.144.
Texto completoKimura, Rui y Izumi Ohzawa. "Time Course of Cross-Orientation Suppression in the Early Visual Cortex". Journal of Neurophysiology 101, n.º 3 (marzo de 2009): 1463–79. http://dx.doi.org/10.1152/jn.90681.2008.
Texto completoMrsic-Flogel, Thomas y Mark Hübener. "Visual Cortex: Suppression by Depression?" Current Biology 12, n.º 16 (agosto de 2002): R547—R549. http://dx.doi.org/10.1016/s0960-9822(02)01049-7.
Texto completoBishop, Christopher W., Sam London y Lee M. Miller. "Visual Influences on Echo Suppression". Current Biology 21, n.º 3 (febrero de 2011): 221–25. http://dx.doi.org/10.1016/j.cub.2010.12.051.
Texto completoKadunce, Daniel C., J. William Vaughan, Mark T. Wallace, Gyorgy Benedek y Barry E. Stein. "Mechanisms of Within- and Cross-Modality Suppression in the Superior Colliculus". Journal of Neurophysiology 78, n.º 6 (1 de diciembre de 1997): 2834–47. http://dx.doi.org/10.1152/jn.1997.78.6.2834.
Texto completoJoo, Sung Jun y Scott O. Murray. "Contextual effects in human visual cortex depend on surface structure". Journal of Neurophysiology 111, n.º 9 (1 de mayo de 2014): 1783–91. http://dx.doi.org/10.1152/jn.00671.2013.
Texto completoBaker, Daniel H., Greta Vilidaite y Alex R. Wade. "Steady-state measures of visual suppression". PLOS Computational Biology 17, n.º 10 (13 de octubre de 2021): e1009507. http://dx.doi.org/10.1371/journal.pcbi.1009507.
Texto completoLunghi, Claudia, Luca Lo Verde y David Alais. "Touch Accelerates Visual Awareness". i-Perception 8, n.º 1 (enero de 2017): 204166951668698. http://dx.doi.org/10.1177/2041669516686986.
Texto completoTesis sobre el tema "Visual suppression"
Mucke, Sven. "Visual suppression during dynamic ocular accommodation". Thesis, Glasgow Caledonian University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547426.
Texto completoVilidaite, Greta. "Neural noise and suppression in visual processing". Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/19685/.
Texto completoCouturier, Nicholas H. "LOW FREQUENCY AUDIO-VISUAL STIMULATION FOR SEIZURE SUPPRESSION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1401711802.
Texto completoStein, Timo. "Visual processing of social information during interocular suppression". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16547.
Texto completoWe studied the processing of socially relevant visual stimuli during continuous flash suppression (CFS), a potent interocular suppression technique that we used to render stimuli invisible. In Studies 1–6, we measured the duration of perceptual suppression during CFS to test whether socially relevant stimuli have privileged access to visual awareness. Study 1 demonstrated that face detection in adult observers is modulated by facial properties previously shown to modulate looking preferences in newborns. Study 2 revealed own-race and own-age biases in face detection, indicating that visual awareness of faces is shaped by visual experience with one’s own social group. In Study 3, we found larger effects of stimulus inversion on the detection of human faces and bodies than for other familiar objects, suggesting that detection mechanisms are preferentially tuned to conspecifics. Study 4 showed that faces with direct gaze are detected more quickly than faces with averted gaze. Study 5 revealed a confounding factor in schematic emotional faces that are considered to be well-controlled visual stimuli. In Study 6, we found that faster detection of fearful compared to neutral faces relies on high spatial frequencies, arguing against a functional role of a subcortical pathway to the amygdala. Study 7 showed that measures of visual detection during CFS cannot provide unequivocal evidence for unconscious processing under CFS. In Studies 8 and 9 we therefore measured adaptation aftereffects from stimuli rendered permanently invisible by CFS. In Study 8, we measured face shape aftereffects and found that only low-level monocular components of face shape adaptation can proceed unconsciously, whereas higher-level components depend on visual awareness. Study 9 revealed that only size-dependent low-level components of eye gaze can be represented unconsciously, while object-centered higher-level representations of eye gaze directions require visual awareness.
Annett, Judith Marion. "Effects of visual and verbal suppression on olfactory memory". Thesis, University of Ulster, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357673.
Texto completoPajani, Auréliane. "Influence of predictive context on visual processing". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE028.
Texto completoAccording to theoretical frameworks casting perception as inference, our brain can learn the statistical regularities present in the sensory world, and use this prior information to generate predictions, which in turn shape our perceptual contents. The work conducted in this PhD includes three main studies aimed at characterizing the neural determinants of misperceptions, as well as the nature of neural predictions. Perceptual errors may arise from an attempt of our visual system to 'explain' impreciseinputs with an erroneous hypothesis. In a first functional Magnetic Resonance Imaging (fMRI) study, we show that during a detection task, hallucinations are associated with animprecise and biased state of sensory circuits preceding sensation. Stimulus repetition is associated with decreased neural responses, known as Repetition Suppression, and shorter response times, known as priming. These phenomena may reflectpredictive mechanisms under an implicit prior over repetition. In a second fMRI study, we show that this putative prior cannot be changed by experience, suggesting a local, possibly hard-wired neural implementation. In a series of behavioral experiments, we show thatpriming is modulated by predictions, supporting a predictive account of this phenomenon. Our second fMRI study also shows that a mid-level face-sensitive region codes for exemplarspecific predictions, which sheds light on the nature of the predictions encoded along thevisual hierarchy. Altogether, our results speak to the dependence of perception on prior brain states. Both spontaneous activity in sensory circuits and previous stimulation interact with sensory inputsto shape our perceptual contents
Boulay, Chadwick. "Cortical mechanisms of saccadic suppression and visual motion : a transcranial magnetic stimulation study in humans". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83968.
Texto completoDiamond, Mark R. "The effect of saccades on visual sensitivity and time perception". University of Western Australia. School of Psychology, 2003. http://theses.library.uwa.edu.au/adt-WU2003.0038.
Texto completoDuyck, Marianne. "Continuité perceptive autour des saccades et des clignements des yeux : rôle des mécanismes rétiniens et extra-rétiniens". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB231.
Texto completoThe retinal input is discontinuous. On the one hand saccades, that occur 3-4 times a minute, cause a huge motion of the image on the retina that should result in smearing of the high frequencies of the image and perceived motion. On the other hand eye blinks induce drastic transient decreases in luminance every 3-4 seconds. Under real-world conditions, those visual consequences of saccades and blinks are barely noticed and the world appears continuous and sharp: two phenomena that can be referred to as saccadic and blink omission. In this thesis we were interested in understanding how the visual system deals with these interruptions and which mechanisms contribute to perceived continuity around saccades and blinks. Two main elements could contribute to those omissions: the visual input itself and an extra-retinal mechanism informing the brain of the impending interruption that would affect information processing around saccades and blinks. In a first series of experiments we studied the characteristics of masking of the saccadic smear, the extent to which clear and still pre- and post-saccadic images are responsible for the perceptual omission of saccadic smear. In particular, we designed an objective method to measure smear masking and studied its spatial extent and whether it is of peripheral or central origin. We replicated previous results of saccadic masking with this new method and found that smear masking seems to take place after the site of binocular interaction and survives separations between smear and mask as much as 6 deg. In a second study we compared sensitivity to low-frequency gratings around saccades and in fixation when the visual input simulates the visual consequences of saccades. Moreover we tried to determine whether the greater decrease in sensitivity around real, as compared to simulated, saccades that we found could be accounted for by the cinematic properties of the eye movement. The goal of the third study was to determine if masking was sufficient to explain the lack of perceived motion during saccades. To do that we presented, during fixation, a natural scene-like stimulus moving at saccadic speeds that could be preceded and followed by the initial or final static image. Results indicate that the amplitude of perceived motion considerably decreased in the presence of pre- and post-masks, even though motion was still perceived for long mask durations. In a final series of studies, we probed duration perception around blinks. In a first experiment we quantified the contribution of the duration of a blink to a longer period of darkness and in a second experiment we tested the perceived duration of an object interrupted or not by a blink. Results suggest the involvement of an extra-retinal mechanism that suppresses the perceived duration of the darkness caused by the blink, but not the duration of visual objects that straddle the blink. Taken together these results refine our understanding of the relative contributions of retinal and extra-retinal mechanisms to saccadic and blink omission
Stein, Timo [Verfasser], John-Dylan [Akademischer Betreuer] Haynes, Philipp [Akademischer Betreuer] Sterzer y Naotsugu [Akademischer Betreuer] Tsuchiya. "Visual processing of social information during interocular suppression / Timo Stein. Gutachter: John-Dylan Haynes ; Philipp Sterzer ; Naotsugu Tsuchiya". Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://d-nb.info/1025112334/34.
Texto completoLibros sobre el tema "Visual suppression"
Annett, Judith M. Effects of visual and verbal suppression on olfactory memory. [S.l: The Author], 1993.
Buscar texto completoLavallée, Marielle. Left/right ear suppressions during dichotic listening and left/right visual field errors during a tachistoscope task: Support for the connection between spiritualistic beliefs and right hemispheric activity. Sudbury, Ont: Laurentian University, Behavioural Neuroscience Program, 1992.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Visual Suppression of the Vestibulo-Ocular Reflex During Space Flight. Independently Published, 2019.
Buscar texto completoArt of Suppression: Confronting the Nazi Past in Histories of the Visual and Performing Arts. University of California Press, 2016.
Buscar texto completoPotter, Pamela M. Art of Suppression: Confronting the Nazi Past in Histories of the Visual and Performing Arts. University of California Press, 2016.
Buscar texto completoBonneh, Yoram. Motion-Induced Blindness. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0103.
Texto completoBlake, Randolph. Binocular Rivalry. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0105.
Texto completoBarker, Lucy, Kelly MacKenzie, Joanne Hancox, Wanda Kozlowska y Andrew Tatham. Paediatric ophthalmology and strabismus. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199672516.003.0009.
Texto completoFord, Rebecca y Moneesh Patel. Strabismus and oculomotility. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199237593.003.0008.
Texto completoBloom, Lisa E. Climate Change and the New Polar Aesthetics. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478018643.
Texto completoCapítulos de libros sobre el tema "Visual suppression"
Wu, Charles Q. "Computational and Neural Mechanisms for Visual Suppression". En Advances in Neural Networks - ISNN 2010, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13318-3_30.
Texto completoIbbotson, Michael R. "Intrasaccadic Motion: Neural Evidence for Saccadic Suppression and Postsaccadic Enhancement". En Dynamics of Visual Motion Processing, 239–57. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0781-3_11.
Texto completoBeuth, Frederik, Amirhossein Jamalian y Fred H. Hamker. "How Visual Attention and Suppression Facilitate Object Recognition?" En Artificial Neural Networks and Machine Learning – ICANN 2014, 459–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11179-7_58.
Texto completoChen, Chen, Minh N. Do y Jue Wang. "Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization". En Computer Vision – ECCV 2016, 576–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46475-6_36.
Texto completoSasaki, Tsuyoshi, Shoma Fushimi, Yong Jian Nyioh y Kazuhiko Terashima. "Novel Virtual Training System for Learning the Sway Suppression of Rotary Crane by Presenting Joystick Motion or Visual Information". En Informatics in Control, Automation and Robotics, 233–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10891-9_13.
Texto completoYan, Xiujun, Zhonghua Li y Lin Chen. "Prototype Monitoring of Cavitation in Valve Culvert of Qianwei Shiplock". En Lecture Notes in Civil Engineering, 553–64. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_48.
Texto completoMiura, Naoki, Ujike Hiroyasu y Michiko Ohkura. "Influence of Fixation Point Movement on Visually Induced Motion Sickness Suppression Effect". En Advances in Intelligent Systems and Computing, 277–88. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94944-4_31.
Texto completoPotter, Pamela M. "Visual and Performing Arts in Nazi Germany". En Art of Suppression, 1–47. University of California Press, 2016. http://dx.doi.org/10.1525/california/9780520282346.003.0001.
Texto completo"1. Visual and Performing Arts in Nazi Germany: What Is Known and What Is Believed". En Art of Suppression, 1–47. University of California Press, 2019. http://dx.doi.org/10.1525/9780520957961-004.
Texto completoIrwin, David E. "Eye Movements And Visual Cognitive Suppression". En Psychology of Learning and Motivation, 265–93. Elsevier, 2003. http://dx.doi.org/10.1016/s0079-7421(03)01008-9.
Texto completoActas de conferencias sobre el tema "Visual suppression"
Barrett, Ron y Joris Melkert. "UAV visual signature suppression via adaptive materials". En Smart Structures and Materials, editado por Edward V. White. SPIE, 2005. http://dx.doi.org/10.1117/12.599056.
Texto completoLi, Tianhong, Lijie Fan, Yuan Yuan, Hao He, Yonglong Tian, Rogerio Feris, Piotr Indyk y Dina Katabi. "Addressing Feature Suppression in Unsupervised Visual Representations". En 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2023. http://dx.doi.org/10.1109/wacv56688.2023.00146.
Texto completoLutsky, Maksim G., Viktor M. Sineglazov y Vitaly S. Ishchenko. "Suppression of Noise in Visual Navigation Systems". En 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). IEEE, 2021. http://dx.doi.org/10.1109/apuavd53804.2021.9615405.
Texto completoHe, Yijia, Yue Guo, Aixue Ye, Feng Wen y Kui Yuan. "Robust Dense Visual Odometry with boundary pixel suppression". En 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2016. http://dx.doi.org/10.1109/robio.2016.7866542.
Texto completoWang, Xin, Fu Liu, Youli Wei y Huantian Zhou. "Infrared-visual image sequence fusion algorithm with noise suppression". En ISPDI 2013 - Fifth International Symposium on Photoelectronic Detection and Imaging, editado por Haimei Gong, Zelin Shi, Qian Chen y Jin Lu. SPIE, 2013. http://dx.doi.org/10.1117/12.2035003.
Texto completoLiu, Kaiwen, Jin Gao, Haowei Liu, Liang Li, Bing Li y Weiming Hu. "Exploring Motion Information for Distractor Suppression in Visual Tracking". En 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2022. http://dx.doi.org/10.1109/cvprw56347.2022.00209.
Texto completoXia, Yan y Zhou Zhao. "Cross-modal Background Suppression for Audio-Visual Event Localization". En 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01936.
Texto completoOsbourn, Gordon C. "Illusory Mach bands: visual artifacts or tokens of perceived illumination changes?" En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fb4.
Texto completoZhang, Yana, Kanza Khan, Lingling Lv y Pamela Cosman. "Binocular suppression based visual masking model for stereo image watermarking". En 2015 IEEE 16th International Conference on Communication Technology (ICCT). IEEE, 2015. http://dx.doi.org/10.1109/icct.2015.7399788.
Texto completoSong, Jianwei y Ruoyu Yang. "Feature Boosting, Suppression, and Diversification for Fine-Grained Visual Classification". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534004.
Texto completoInformes sobre el tema "Visual suppression"
Winterbottom, Marc D., Robert Patterson, Byron J. Pierce y Amanda Taylor. Visual Suppression of Monocularly Presented Symbology Against a Fused Background in a Simulation and Training Environment. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada464062.
Texto completo