Siga este enlace para ver otros tipos de publicaciones sobre el tema: Visual learning.

Artículos de revistas sobre el tema "Visual learning"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Visual learning".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Sze, Daniel Y. "Visual Learning". Journal of Vascular and Interventional Radiology 32, n.º 3 (marzo de 2021): 331. http://dx.doi.org/10.1016/j.jvir.2021.01.265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Liu, Yan, Yang Liu, Shenghua Zhong y Songtao Wu. "Implicit Visual Learning". ACM Transactions on Intelligent Systems and Technology 8, n.º 2 (18 de enero de 2017): 1–24. http://dx.doi.org/10.1145/2974024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cruz, Rodrigo Santa, Basura Fernando, Anoop Cherian y Stephen Gould. "Visual Permutation Learning". IEEE Transactions on Pattern Analysis and Machine Intelligence 41, n.º 12 (1 de diciembre de 2019): 3100–3114. http://dx.doi.org/10.1109/tpami.2018.2873701.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jones, Rachel. "Visual learning visualized". Nature Reviews Neuroscience 4, n.º 1 (enero de 2003): 10. http://dx.doi.org/10.1038/nrn1014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lu, Zhong-Lin, Tianmiao Hua, Chang-Bing Huang, Yifeng Zhou y Barbara Anne Dosher. "Visual perceptual learning". Neurobiology of Learning and Memory 95, n.º 2 (febrero de 2011): 145–51. http://dx.doi.org/10.1016/j.nlm.2010.09.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Richler, Jennifer J. y Thomas J. Palmeri. "Visual category learning". Wiley Interdisciplinary Reviews: Cognitive Science 5, n.º 1 (26 de noviembre de 2013): 75–94. http://dx.doi.org/10.1002/wcs.1268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nida, Diini Fitrahtun, Muhyiatul Fadilah, Ardi Ardi y Suci Fajrina. "CHARACTERISTICS OF VISUAL LITERACY-BASED BIOLOGY LEARNING MODULE VALIDITY ON PHOTOSYNTHESIS LEARNING MATERIALS". JURNAL PAJAR (Pendidikan dan Pengajaran) 7, n.º 4 (29 de julio de 2023): 785. http://dx.doi.org/10.33578/pjr.v7i4.9575.

Texto completo
Resumen
Visual literacy is the skill to interpret and give meaning to information in the form of images or visuals. Visual literacy is included in the list of 21st-century skills. The observation results indicate that most of the students have not mastered visual literacy well. One of the efforts that can be made to improve visual literacy is the provision of appropriate and right teaching materials. The research is an R&D (Research and Development) using a 4-D model, which is modified to 3-D (define, design, develop). The instruments used were content analysis sheets and validation questionnaires. The results of the research imply that there are three characteristics of the validity of the developed module. First, visual literacy produces students’ critical thinking and communication skills by building their own meaning or conclusions regarding the given image object. Second, visual literacy produces students' creative thinking by recreating it in the form of images or other visual objects from the provided visual information. Third, visual literacy produces students' critical thinking skills by connecting visual objects or images that are distributed to them. The module is considered to be very valid (feasible) to use with a percentage of 94.23%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Guinibert, Matthew. "Learn from your environment: A visual literacy learning model". Australasian Journal of Educational Technology 36, n.º 4 (28 de septiembre de 2020): 173–88. http://dx.doi.org/10.14742/ajet.5200.

Texto completo
Resumen
Based on the presupposition that visual literacy skills are not usually learned unaided by osmosis, but require targeted learning support, this article explores how everyday encounters with visuals can be leveraged as contingent learning opportunities. The author proposes that a learner’s environment can become a visual learning space if appropriate learning support is provided. This learning support may be delivered via the anytime and anywhere capabilities of mobile learning (m-learning), which facilitates peer learning in informal settings. The study propositioned a rhizomatic m-learning model of visual skills that describes how the visuals one encounters in their physical everyday environment can be leveraged as visual literacy learning opportunities. The model was arrived at by following an approach based on heuristic inquiry and user-centred design, including testing prototypes with representative learners. The model describes one means visual literacy could be achieved by novice learners from contingent learning encounters in informal learning environments, through collaboration and by providing context-aware learning support. Such a model shifts the onus of visual literacy learning away from academic programmes and, in this way, opens an alternative pathway for the learning of visual skills. Implications for practice or policy: This research proposes a means for learners to leverage visuals they encounter in their physical everyday environment as visual literacy learning opportunities. M-learning software developers may find the pedagogical model useful in informing their own software. Educators teaching visual skills may find application of the learning model’s pedagogical assumptions in isolation in their own formal learning settings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Taga, Tadashi, Kazuhito Yoshizaki y Kimiko Kato. "Visual field difference in visual statistical learning." Proceedings of the Annual Convention of the Japanese Psychological Association 79 (22 de septiembre de 2015): 2EV—074–2EV—074. http://dx.doi.org/10.4992/pacjpa.79.0_2ev-074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Holland, Keith. "Visual skills for learning". Set: Research Information for Teachers, n.º 2 (1 de agosto de 1996): 1–4. http://dx.doi.org/10.18296/set.0900.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

MuhiAl-Din, Shaima y Siddeeq Al - Bana. "Learning Visual Basic Reactively". TANMIYAT AL-RAFIDAIN 30, n.º 92 (1 de diciembre de 2008): 130–49. http://dx.doi.org/10.33899/tanra.2008.161729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Fuchs, R., J. Waser y M. E. Groller. "Visual Human+Machine Learning". IEEE Transactions on Visualization and Computer Graphics 15, n.º 6 (noviembre de 2009): 1327–34. http://dx.doi.org/10.1109/tvcg.2009.199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Turk-Browne, Nicholas B., Phillip J. Isola, Brian J. Scholl y Teresa A. Treat. "Multidimensional visual statistical learning." Journal of Experimental Psychology: Learning, Memory, and Cognition 34, n.º 2 (2008): 399–407. http://dx.doi.org/10.1037/0278-7393.34.2.399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mountstephen, Mary. "SEN special: Visual learning". Primary Teacher Update 2011, n.º 1 (octubre de 2011): 38–39. http://dx.doi.org/10.12968/prtu.2011.1.1.38.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bischof, Walter F. "Visual Learning: An Overview". Swiss Journal of Psychology 63, n.º 3 (septiembre de 2004): 151–64. http://dx.doi.org/10.1024/1421-0185.63.3.151.

Texto completo
Resumen
A review is presented of modern approaches to the learning and recognition of complex patterns, including discriminant functions, neural networks, decision trees, and hidden Markov models. Next, several relational learning systems are introduced and discussed, in detail one specific technique, conditional rule generation. This technique is shown to be very flexible and useful for the learning of static patterns, such as objects, as well as dynamic patterns, such as movement patterns. The technique is illustrated with a number of very difficult visual learning problems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Shams, L., A. Seitz y V. van Wassenhove. "Audio-visual statistical learning". Journal of Vision 6, n.º 6 (18 de marzo de 2010): 152. http://dx.doi.org/10.1167/6.6.152.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Sanderson, Katharine. "Learning tools: Visual aids". Nature 477, n.º 7366 (septiembre de 2011): 621–22. http://dx.doi.org/10.1038/nj7366-621a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Taylor, Sarah, Taehwan Kim, Yisong Yue, Ben Milner y Iain Matthews. "Learning from visual speech". Journal of the Acoustical Society of America 140, n.º 4 (octubre de 2016): 3004. http://dx.doi.org/10.1121/1.4969315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Seitz, Aaron R., Robyn Kim y Ladan Shams. "Sound Facilitates Visual Learning". Current Biology 16, n.º 14 (julio de 2006): 1422–27. http://dx.doi.org/10.1016/j.cub.2006.05.048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Malec, James F., Robert J. Ivnik y Nancy S. Hinkeldey. "Visual Spatial Learning Test." Psychological Assessment: A Journal of Consulting and Clinical Psychology 3, n.º 1 (marzo de 1991): 82–88. http://dx.doi.org/10.1037/1040-3590.3.1.82.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ji, Ruolei y Lina J. Karam. "Learning-based Visual Compression". Foundations and Trends® in Computer Graphics and Vision 15, n.º 1 (2023): 1–112. http://dx.doi.org/10.1561/0600000101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Muslim, Fachruddiansyah, Ekawarna Ekawarna, Aminah Ramalia, Ricky Purnama Wirayuda y Diki Chen. "Learning Intensity and Visual Learning Style on Learning Outcomes". Journal of Education Research and Evaluation 6, n.º 2 (28 de junio de 2022): 385–96. http://dx.doi.org/10.23887/jere.v6i2.40312.

Texto completo
Resumen
Learning activities do not have to be done for a long time. Good learning intensity is carried out regularly will make learning activities a habit. The learning process also needs to be supported by a learning style that suits the characteristics of students. This study aimed to analyze the intensity of learning-on-learning outcomes, visual learning styles on learning outcomes, and learning intensity and visual learning styles on learning outcomes. This type of research is quantitative with a descriptive quantitative approach. The sample used was 65 students with purposive sampling. Data collection method using questionnaire and documentation. The instrument used is a questionnaire. Data analysis techniques are qualitative descriptive analysis, quantitative, and inferential statistics. The results showed a significant effect of learning intensity on learning outcomes in macroeconomic theory courses. There is a significant effect of visual learning style on learning outcomes in macroeconomic theory courses. There is a significant influence between visual learning styles on learning outcomes of macroeconomic theory courses. There are significant effects of visual learning style on learning outcomes of macroeconomic theory courses. It is concluded that there is a simultaneous influence between learning intensity and visual learning style on learning outcomes in macroeconomic theory courses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Yang, Chuanguang, Zhulin An, Linhang Cai y Yongjun Xu. "Mutual Contrastive Learning for Visual Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 3 (28 de junio de 2022): 3045–53. http://dx.doi.org/10.1609/aaai.v36i3.20211.

Texto completo
Resumen
We present a collaborative learning method called Mutual Contrastive Learning (MCL) for general visual representation learning. The core idea of MCL is to perform mutual interaction and transfer of contrastive distributions among a cohort of networks. A crucial component of MCL is Interactive Contrastive Learning (ICL). Compared with vanilla contrastive learning, ICL can aggregate cross-network embedding information and maximize the lower bound to the mutual information between two networks. This enables each network to learn extra contrastive knowledge from others, leading to better feature representations for visual recognition tasks. We emphasize that the resulting MCL is conceptually simple yet empirically powerful. It is a generic framework that can be applied to both supervised and self-supervised representation learning. Experimental results on image classification and transfer learning to object detection show that MCL can lead to consistent performance gains, demonstrating that MCL can guide the network to generate better feature representations. Code is available at https://github.com/winycg/MCL.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gole, Sule. "Museums as Visual Laboratories in the Learning-Teaching Process". New Trends and Issues Proceedings on Humanities and Social Sciences 2, n.º 7 (27 de enero de 2016): 48–53. http://dx.doi.org/10.18844/gjhss.v2i7.1179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hong, Richang, Yang Yang, Meng Wang y Xian-Sheng Hua. "Learning Visual Semantic Relationships for Efficient Visual Retrieval". IEEE Transactions on Big Data 1, n.º 4 (1 de diciembre de 2015): 152–61. http://dx.doi.org/10.1109/tbdata.2016.2515640.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

HP, Bambang Setiyo, Hartati Mochtar y Atwi Suparman. "The Effect of Blended Learning Approach and Visual-Spatial Ability on Learning Outcomes". JETL (Journal of Education, Teaching and Learning) 5, n.º 1 (31 de marzo de 2020): 193. http://dx.doi.org/10.26737/jetl.v5i1.1150.

Texto completo
Resumen
The purpose of this study was to conduct an empirical study to find out the aspects that influence the basic CNC learning outcomes, in this case regarding the application of the approach blended learning, and the abilities visual-spatial possessed by students who take the course. Based on the types of research variables that exist, then this experimental research is appropriate to be carried out using the experimental Treatment by Level design. Data analysis in this experimental study used 2-way ANOVA with one treatment variable and one attribute variable. This research was carried out using experimental research methods. This research was conducted at the CNC/CADCAM Laboratory, Department of Mechanical Education, Faculty of Engineering, Yogyakarta State University. Research Results 1) Basic CNC learning outcomes of students who take part in learning using the approach Blended Learning higher than students who take learning using the Conventional Approach; 2) Basic CNC learning outcomes of students with ability spatial-visual high, higher than students with abilities spatial-visual low who jointly follow Basic CNC learning; 3) There is an influence of the interaction between learning approaches and spatial visual abilities on basic CNC learning outcomes; 4) Basic CNC learning outcomes of students capable of high spatial visuals who take part in learning with approach blended learning, higher than students with high spatial-visual abilities who follow learning with conventional approaches; 5) Basic CNC learning outcomes of students with low spatial-visual abilities who take part in learning with approach blended learning, lower than students with low spatial-visual abilities who follow learning with conventional approaches. The conclusion of this research is the basic CNC learning outcomes of students who take part in learning using the Approach <em>Blended Learning</em> higher than students who take learning using the Conventional Approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sahuni, Sahuni, Iffah Budiningsih y Lisna Marwani P. "INTERACTION OF LEARNING MEDIA WITH LEARNING INTEREST IN ARABIC LEARNING OUTCOMES". Akademika 9, n.º 02 (30 de noviembre de 2020): 43–52. http://dx.doi.org/10.34005/akademika.v9i02.871.

Texto completo
Resumen
The research aims to determine the influence of visual media, print media and the interest in learning outcomes in Arabic. The research method used is the method of experiment with sample two classes, which amounted to 39 students. Research samples were taken in a simple randomized basis. The Data was analyzed in descriptive and ANAVA. The results are: a) the learning outcome of Arabic students who are taught using visual media is higher than using print media; b) there is interaction between the media and learning interest in Arabic language learning outcomes; c) on students who have a high learning interest, the learning outcomes of Arabic students who use visual media is higher than use print media; d) on students who have low learning interests, the learning outcomes of Arabic students who use visual media are lower than use print media.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Sacha, Dominik, Matthias Kraus, Daniel A. Keim y Min Chen. "VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning". IEEE Transactions on Visualization and Computer Graphics 25, n.º 1 (enero de 2019): 385–95. http://dx.doi.org/10.1109/tvcg.2018.2864838.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Maulida, Sarah y Muhamad Sofian Hadi. "Using Audio Visual Media to Improve English Learning Outcomes". Jurnal Studi Guru dan Pembelajaran 5, n.º 1 (30 de abril de 2022): 11–15. http://dx.doi.org/10.30605/jsgp.5.1.2022.1297.

Texto completo
Resumen
Video recordings, slides, and sound are examples of audio-visual media. It is thought that learning to use audio visuals in English lessons will help students better understand the problems or lessons presented. Because listeners are encouraged to use their imagination and optimize their left and right brain function. Audio-visual media in the form of animated learning videos and power points are used in English subjects at SMK Grafika that are conducted online or online. The purpose of this study was to see if audio visuals could boost students' motivation and enthusiasm for learning during online classes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Aji, Daru Tunggul. "Literasi Visual sebagai Pendekatan dalam Pembelajaran Fotografi". Rekam 17, n.º 2 (30 de octubre de 2021): 123–34. http://dx.doi.org/10.24821/rekam.v17i2.5660.

Texto completo
Resumen
Visual Literacy As an Approach To Learning Photography. This article is an overview of the current photographic phenomena. Visual literacy as an approach becomes an offer in the development of photography learning science. As a of discipline, photography has the complexity of learning, just like other scientific disciplines. In photography learning, visual literacy is a significant capital. Visual literacy can be understood as a person's ability to respond to phenomena. It's not just the ability to switch media (design); from the oral to the visual, from the textual to the visual, from the audio to the visiual or from the visual to the other visual forms, and the ability to conduct studies of existing visual works. In photography, it is necessary not only to be processed artistically but also processed that has critical considerations, both from ethics, aesthetics, and perspective, to a phenomenon
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Nagata, Takeshi y Daiki Hashimoto. "Visual Inspection by Deep Learning and Machine Learning". Journal of The Japan Institute of Electronics Packaging 23, n.º 4 (1 de julio de 2020): 271–74. http://dx.doi.org/10.5104/jiep.23.271.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Haider, Hilde, Katharina Eberhardt, Alexander Kunde y Michael Rose. "Implicit visual learning and the expression of learning". Consciousness and Cognition 22, n.º 1 (marzo de 2013): 82–98. http://dx.doi.org/10.1016/j.concog.2012.11.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Vogels, Rufin. "Mechanisms of Visual Perceptual Learning in Macaque Visual Cortex". Topics in Cognitive Science 2, n.º 2 (abril de 2010): 239–50. http://dx.doi.org/10.1111/j.1756-8765.2009.01051.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Sithole, Seedwell, Ragini Datt, Paul de Lange y Meredith Tharapos. "Learning accounting through visual representations". Accounting Research Journal 34, n.º 4 (18 de mayo de 2021): 365–84. http://dx.doi.org/10.1108/arj-06-2018-0100.

Texto completo
Resumen
Purpose The purpose of this study is to investigate the effectiveness of diagrammatic visualisation techniques versus sentential learning contexts in an accounting subject using the theoretical lens of cognitive load theory (CLT). Design/methodology/approach The present study used four groups of students; two groups completed a task using diagrammatic visualisation learning materials, with one of the groups undertaking their leaning activities collaboratively and another on an individual basis, whereas two comparison groups were given a sentential learning context without diagrams, with one group undertaking their leaning activities collaboratively and the other individually. In addition to performance grades, cognitive load self-report scores were also elicited from participants. Findings The findings of this study indicate support for diagrammatic visualisation techniques for students working collaboratively. Compared with sentential learners, the authors find significantly improved test performance for students who work collaboratively in a diagrammatic visualisation environment. Students in the visualisation environments obtained higher grades than those in the sentential group. In terms of mental effort, students in the visualisation conditions reported the lowest cognitive load. Practical implications The authors conclude that diagrammatic visualisation learning techniques enhance student performance outcomes, particularly for those who work collaboratively. CLT assists in the understanding of the mental processes involved in learning. Instructional designers need to consider CLT when developing diagrammatic visualisation material to enable students to obtain the best possible learning outcomes. Originality/value This study addresses a gap in the literature by examining the use of diagrammatic visualisation materials as an alternative to text when learning accounting. The study explores the effect of visualisation material on students’ cognitive load by analysing their mental effort. The study contributes useful findings on visualisation as a conduit to enhancing the understanding of accounting using CLT principles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Hout, M. C. y S. D. Goldinger. "Learning in repeated visual search". Attention, Perception & Psychophysics 72, n.º 5 (30 de junio de 2010): 1267–82. http://dx.doi.org/10.3758/app.72.5.1267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Copperman, Elana, Catriel Beeri y Nava Ben‐Zvi. "Visual modelling of learning processes". Innovations in Education and Teaching International 44, n.º 3 (agosto de 2007): 257–72. http://dx.doi.org/10.1080/14703290701486571.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Dosher, Barbara y Zhong-Lin Lu. "Visual Perceptual Learning and Models". Annual Review of Vision Science 3, n.º 1 (15 de septiembre de 2017): 343–63. http://dx.doi.org/10.1146/annurev-vision-102016-061249.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Laamerad, Pooya, Daniel Guitton y Christopher C. Pack. "Eye movements shape visual learning". Proceedings of the National Academy of Sciences 117, n.º 14 (24 de marzo de 2020): 8203–11. http://dx.doi.org/10.1073/pnas.1913851117.

Texto completo
Resumen
Most people easily learn to recognize new faces and places, and with more extensive practice they can become experts at visual tasks as complex as radiological diagnosis and action video games. Such perceptual plasticity has been thoroughly studied in the context of training paradigms that require constant fixation. In contrast, when observers learn under more natural conditions, they make frequent saccadic eye movements. Here we show that such eye movements can play an important role in visual learning. Observers performed a task in which they executed a saccade while discriminating the motion of a cued visual stimulus. Additional stimuli, presented simultaneously with the cued one, permitted an assessment of the perceptual integration of information across visual space. Consistent with previous results on perisaccadic remapping [M. Szinte, D. Jonikaitis, M. Rolfs, P. Cavanagh, H. Deubel,J. Neurophysiol.116, 1592–1602 (2016)], most observers preferentially integrated information from locations representing the presaccadic and postsaccadic retinal positions of the cue. With extensive training on the saccade task, these observers gradually acquired the ability to perform similar motion integration without making eye movements. Importantly, the newly acquired pattern of spatial integration was determined by the metrics of the saccades made during training. These results suggest that oculomotor influences on visual processing, long thought to subserve the function of perceptual stability, also play a role in visual plasticity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Chetverikov, Andrey, Gianluca Campana y Árni Kristjánsson. "Rapid learning of visual ensembles". Journal of Vision 17, n.º 2 (28 de febrero de 2017): 21. http://dx.doi.org/10.1167/17.2.21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Turk-Browne, Nicholas. "Hippocampal contributions to visual learning". Journal of Vision 18, n.º 10 (1 de septiembre de 2018): 1365. http://dx.doi.org/10.1167/18.10.1365.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Koller, Harold P. "Visual processing and learning disorders". Current Opinion in Ophthalmology 23, n.º 5 (septiembre de 2012): 377–83. http://dx.doi.org/10.1097/icu.0b013e32835720e2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Beymer, D. y T. Poggio. "Image Representations for Visual Learning". Science 272, n.º 5270 (28 de junio de 1996): 1905–9. http://dx.doi.org/10.1126/science.272.5270.1905.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hiles, B. P., N. Intrator y S. Edelman. "Unsupervised learning of visual structure". Journal of Vision 2, n.º 7 (15 de marzo de 2010): 74. http://dx.doi.org/10.1167/2.7.74.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Li, Jia. "Learning-based visual saliency computation". ACM SIGMultimedia Records 2, n.º 4 (diciembre de 2010): 8–9. http://dx.doi.org/10.1145/2039331.2039336.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Camachon, Cyril, Gilles Montagne, Martinus Buekers y Michel Laurent. "Learning to Use Visual Information". Ecological Psychology 16, n.º 2 (abril de 2004): 115–28. http://dx.doi.org/10.1207/s15326969eco1602_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Slemmer, J. A., N. Z. Kirkham y S. P. Johnson. "Visual statistical learning in infancy". Journal of Vision 1, n.º 3 (14 de marzo de 2010): 25. http://dx.doi.org/10.1167/1.3.25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Jacobs, Robert A. y Ladan Shams. "Visual Learning in Multisensory Environments". Topics in Cognitive Science 2, n.º 2 (abril de 2010): 217–25. http://dx.doi.org/10.1111/j.1756-8765.2009.01056.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chen, D. y Y. V. Jiang. "Culture and visual context learning". Journal of Vision 7, n.º 9 (30 de marzo de 2010): 800. http://dx.doi.org/10.1167/7.9.800.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hinton, Geoffrey E. "Learning to represent visual input". Philosophical Transactions of the Royal Society B: Biological Sciences 365, n.º 1537 (12 de enero de 2010): 177–84. http://dx.doi.org/10.1098/rstb.2009.0200.

Texto completo
Resumen
One of the central problems in computational neuroscience is to understand how the object-recognition pathway of the cortex learns a deep hierarchy of nonlinear feature detectors. Recent progress in machine learning shows that it is possible to learn deep hierarchies without requiring any labelled data. The feature detectors are learned one layer at a time and the goal of the learning procedure is to form a good generative model of images, not to predict the class of each image. The learning procedure only requires the pairwise correlations between the activations of neuron-like processing units in adjacent layers. The original version of the learning procedure is derived from a quadratic ‘energy’ function but it can be extended to allow third-order, multiplicative interactions in which neurons gate the pairwise interactions between other neurons. A technique for factoring the third-order interactions leads to a learning module that again has a simple learning rule based on pairwise correlations. This module looks remarkably like modules that have been proposed by both biologists trying to explain the responses of neurons and engineers trying to create systems that can recognize objects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Li, Wu, Valentin Piëch y Charles D. Gilbert. "Learning to Link Visual Contours". Neuron 57, n.º 3 (febrero de 2008): 442–51. http://dx.doi.org/10.1016/j.neuron.2007.12.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía