Literatura académica sobre el tema "Visual learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Visual learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Visual learning"
Sze, Daniel Y. "Visual Learning". Journal of Vascular and Interventional Radiology 32, n.º 3 (marzo de 2021): 331. http://dx.doi.org/10.1016/j.jvir.2021.01.265.
Texto completoLiu, Yan, Yang Liu, Shenghua Zhong y Songtao Wu. "Implicit Visual Learning". ACM Transactions on Intelligent Systems and Technology 8, n.º 2 (18 de enero de 2017): 1–24. http://dx.doi.org/10.1145/2974024.
Texto completoCruz, Rodrigo Santa, Basura Fernando, Anoop Cherian y Stephen Gould. "Visual Permutation Learning". IEEE Transactions on Pattern Analysis and Machine Intelligence 41, n.º 12 (1 de diciembre de 2019): 3100–3114. http://dx.doi.org/10.1109/tpami.2018.2873701.
Texto completoJones, Rachel. "Visual learning visualized". Nature Reviews Neuroscience 4, n.º 1 (enero de 2003): 10. http://dx.doi.org/10.1038/nrn1014.
Texto completoLu, Zhong-Lin, Tianmiao Hua, Chang-Bing Huang, Yifeng Zhou y Barbara Anne Dosher. "Visual perceptual learning". Neurobiology of Learning and Memory 95, n.º 2 (febrero de 2011): 145–51. http://dx.doi.org/10.1016/j.nlm.2010.09.010.
Texto completoRichler, Jennifer J. y Thomas J. Palmeri. "Visual category learning". Wiley Interdisciplinary Reviews: Cognitive Science 5, n.º 1 (26 de noviembre de 2013): 75–94. http://dx.doi.org/10.1002/wcs.1268.
Texto completoNida, Diini Fitrahtun, Muhyiatul Fadilah, Ardi Ardi y Suci Fajrina. "CHARACTERISTICS OF VISUAL LITERACY-BASED BIOLOGY LEARNING MODULE VALIDITY ON PHOTOSYNTHESIS LEARNING MATERIALS". JURNAL PAJAR (Pendidikan dan Pengajaran) 7, n.º 4 (29 de julio de 2023): 785. http://dx.doi.org/10.33578/pjr.v7i4.9575.
Texto completoGuinibert, Matthew. "Learn from your environment: A visual literacy learning model". Australasian Journal of Educational Technology 36, n.º 4 (28 de septiembre de 2020): 173–88. http://dx.doi.org/10.14742/ajet.5200.
Texto completoTaga, Tadashi, Kazuhito Yoshizaki y Kimiko Kato. "Visual field difference in visual statistical learning." Proceedings of the Annual Convention of the Japanese Psychological Association 79 (22 de septiembre de 2015): 2EV—074–2EV—074. http://dx.doi.org/10.4992/pacjpa.79.0_2ev-074.
Texto completoHolland, Keith. "Visual skills for learning". Set: Research Information for Teachers, n.º 2 (1 de agosto de 1996): 1–4. http://dx.doi.org/10.18296/set.0900.
Texto completoTesis sobre el tema "Visual learning"
Zhu, Fan. "Visual feature learning". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8218/.
Texto completoGoh, Hanlin. "Learning deep visual representations". Paris 6, 2013. http://www.theses.fr/2013PA066356.
Texto completoRecent advancements in the areas of deep learning and visual information processing have presented an opportunity to unite both fields. These complementary fields combine to tackle the problem of classifying images into their semantic categories. Deep learning brings learning and representational capabilities to a visual processing model that is adapted for image classification. This thesis addresses problems that lead to the proposal of learning deep visual representations for image classification. The problem of deep learning is tackled on two fronts. The first aspect is the problem of unsupervised learning of latent representations from input data. The main focus is the integration of prior knowledge into the learning of restricted Boltzmann machines (RBM) through regularization. Regularizers are proposed to induce sparsity, selectivity and topographic organization in the coding to improve discrimination and invariance. The second direction introduces the notion of gradually transiting from unsupervised layer-wise learning to supervised deep learning. This is done through the integration of bottom-up information with top-down signals. Two novel implementations supporting this notion are explored. The first method uses top-down regularization to train a deep network of RBMs. The second method combines predictive and reconstructive loss functions to optimize a stack of encoder-decoder networks. The proposed deep learning techniques are applied to tackle the image classification problem. The bag-of-words model is adopted due to its strengths in image modeling through the use of local image descriptors and spatial pooling schemes. Deep learning with spatial aggregation is used to learn a hierarchical visual dictionary for encoding the image descriptors into mid-level representations. This method achieves leading image classification performances for object and scene images. The learned dictionaries are diverse and non-redundant. The speed of inference is also high. From this, a further optimization is performed for the subsequent pooling step. This is done by introducing a differentiable pooling parameterization and applying the error backpropagation algorithm. This thesis represents one of the first attempts to synthesize deep learning and the bag-of-words model. This union results in many challenging research problems, leaving much room for further study in this area
Walker, Catherine Livesay. "Visual learning through Hypermedia". CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1148.
Texto completoOwens, Andrew (Andrew Hale). "Learning visual models from paired audio-visual examples". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107352.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-104).
From the clink of a mug placed onto a saucer to the bustle of a busy café, our days are filled with visual experiences that are accompanied by distinctive sounds. In this thesis, we show that these sounds can provide a rich training signal for learning visual models. First, we propose the task of predicting the sound that an object makes when struck as a way of studying physical interactions within a visual scene. We demonstrate this idea by training an algorithm to produce plausible soundtracks for videos in which people hit and scratch objects with a drumstick. Then, with human studies and automated evaluations on recognition tasks, we verify that the sounds produced by the algorithm convey information about actions and material properties. Second, we show that ambient audio - e.g., crashing waves, people speaking in a crowd - can also be used to learn visual models. We train a convolutional neural network to predict a statistical summary of the sounds that occur within a scene, and we demonstrate that the visual representation learned by the model conveys information about objects and scenes.
by Andrew Owens.
Ph. D.
Peyre, Julia. "Learning to detect visual relations". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE016.
Texto completoIn this thesis, we study the problem of detection of visual relations of the form (subject, predicate, object) in images, which are intermediate level semantic units between objects and complex scenes. Our work addresses two main challenges in visual relation detection: (1) the difficulty of obtaining box-level annotations to train fully-supervised models, (2) the variability of appearance of visual relations. We first propose a weakly-supervised approach which, given pre-trained object detectors, enables us to learn relation detectors using image-level labels only, maintaining a performance close to fully-supervised models. Second, we propose a model that combines different granularities of embeddings (for subject, object, predicate and triplet) to better model appearance variation and introduce an analogical reasoning module to generalize to unseen triplets. Experimental results demonstrate the improvement of our hybrid model over a purely compositional model and validate the benefits of our transfer by analogy to retrieve unseen triplets
Wang, Zhaoqing. "Self-supervised Visual Representation Learning". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29595.
Texto completoTang-Wright, Kimmy. "Visual topography and perceptual learning in the primate visual system". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:388b9658-dceb-443a-a19b-c960af162819.
Texto completoShi, Xiaojin. "Visual learning from small training datasets /". Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.
Texto completoLiu, Jingen. "Learning Semantic Features for Visual Recognition". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3358.
Texto completoPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Beale, Dan. "Autonomous visual learning for robotic systems". Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558886.
Texto completoLibros sobre el tema "Visual learning"
Katsushi, Ikeuchi y Veloso Manuela M, eds. Symbolic visual learning. New York: Oxford University Press, 1997.
Buscar texto completoK, Nayar Shree y Poggio Tomaso, eds. Early visual learning. New York: Oxford University Press, 1996.
Buscar texto completoM, Moore David y Dwyer Francis M, eds. Visual literacy: A spectrum of visual learning. Englewood Cliffs, N.J: Educational Technology Publications, 1994.
Buscar texto completoN, Erin Jane, ed. Visual handicaps and learning. 3a ed. Austin, Tex: PRO-ED, 1992.
Buscar texto completoLiberty, Jesse. Learning Visual Basic .NET. Sebastopol, CA: O'Reilly, 2002.
Buscar texto completoRourke, Adrianne. Improving visual teaching materials. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoBaratta, Alex. Visual writing. Newcastle upon Tyne: Cambridge Scholars, 2010.
Buscar texto completoManfred, Fahle y Poggio Tomaso, eds. Perceptual learning. Cambridge, Mass: MIT Press, 2002.
Buscar texto completoVakanski, Aleksandar y Farrokh Janabi-Sharifi. Robot Learning by Visual Observation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119091882.
Texto completoBeatty, Grace Joely. PowerPoint: The visual learning guide. Rocklin, CA: Prima Pub., 1994.
Buscar texto completoCapítulos de libros sobre el tema "Visual learning"
Burge, M. y W. Burger. "Learning visual ideals". En Image Analysis and Processing, 316–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63508-4_138.
Texto completoBurge, M. y W. Burger. "Learning visual ideals". En Lecture Notes in Computer Science, 464–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0025067.
Texto completoPanciroli, Chiara, Laura Corazza y Anita Macauda. "Visual-Graphic Learning". En Proceedings of the 2nd International and Interdisciplinary Conference on Image and Imagination, 49–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41018-6_6.
Texto completoLu, Zhong-Lin y Barbara Anne Dosher. "Visual Perceptual Learning". En Encyclopedia of the Sciences of Learning, 3415–18. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_258.
Texto completoLovegrove, William. "The Visual Deficit Hypothesis". En Learning Disabilities, 246–69. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9133-3_8.
Texto completoGolon, Alexandra Shires. "Learning Styles Differentiation". En VISUAL-SPATIAL learners, 1–18. 2a ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003239482-1.
Texto completoGolon, Alexandra Shires. "Learning Styles Differentiation". En VISUAL-SPATIAL learners, 1–18. 2a ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003239482-1.
Texto completoWu, Qi, Peng Wang, Xin Wang, Xiaodong He y Wenwu Zhu. "Video Representation Learning". En Visual Question Answering, 111–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0964-1_7.
Texto completoWu, Qi, Peng Wang, Xin Wang, Xiaodong He y Wenwu Zhu. "Deep Learning Basics". En Visual Question Answering, 15–26. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0964-1_2.
Texto completoGrobstein, Paul y Kao Liang Chow. "Visual System Development, Plasticity". En Learning and Memory, 56–58. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4899-6778-7_22.
Texto completoActas de conferencias sobre el tema "Visual learning"
Buijs, Jean M. y Michael S. Lew. "Learning visual concepts". En the seventh ACM international conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/319878.319880.
Texto completoZhao, Qi y Christof Koch. "Learning visual saliency". En 2011 45th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2011. http://dx.doi.org/10.1109/ciss.2011.5766178.
Texto completoBERARDI, NICOLETTA y ADRIANA FIORENTINI. "VISUAL PERCEPTUAL LEARNING". En Proceedings of the International School of Biophysics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799975_0034.
Texto completoJi, Daomin, Hui Luo y Zhifeng Bao. "Visualization Recommendation Through Visual Relation Learning and Visual Preference Learning". En 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023. http://dx.doi.org/10.1109/icde55515.2023.00145.
Texto completoGuangming Chang, Chunfen Yuan y Weiming Hu. "Interclass visual similarity based visual vocabulary learning". En 2011 First Asian Conference on Pattern Recognition (ACPR 2011). IEEE, 2011. http://dx.doi.org/10.1109/acpr.2011.6166597.
Texto completoMahouachi, Dorra y Moulay A. Akhloufi. "Deep learning visual programming". En Disruptive Technologies in Information Sciences III, editado por Misty Blowers, Russell D. Hall y Venkateswara R. Dasari. SPIE, 2019. http://dx.doi.org/10.1117/12.2519882.
Texto completoCruz, Rodrigo Santa, Basura Fernando, Anoop Cherian y Stephen Gould. "DeepPermNet: Visual Permutation Learning". En 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.640.
Texto completoCai, Haipeng, Shiv Raj Pant y Wen Li. "Towards learning visual semantics". En ESEC/FSE '20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3368089.3417040.
Texto completoTeow, Matthew Y. W. "Convolutional Visual Feature Learning". En the 2018 International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3232651.3232672.
Texto completoYeh, Tom y Trevor Darrell. "Dynamic visual category learning". En 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587616.
Texto completoInformes sobre el tema "Visual learning"
Bhanu, Bir. Learning Integrated Visual Database for Image Exploitation. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2002. http://dx.doi.org/10.21236/ada413389.
Texto completoEdelman, Shimon, Heinrich H. Buelthoff y Erik Sklar. Task and Object Learning in Visual Recognition. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada259961.
Texto completoJiang, Yuhong V. Implicit Learning of Complex Visual Contexts Under Non-Optimal Conditions. Fort Belvoir, VA: Defense Technical Information Center, julio de 2007. http://dx.doi.org/10.21236/ada482119.
Texto completoPetrie, Christopher y Katija Aladin. Spotlight: Visual Arts. HundrED, diciembre de 2020. http://dx.doi.org/10.58261/azgu5536.
Texto completoPoggio, Tomaso y Stephen Smale. Hierarchical Kernel Machines: The Mathematics of Learning Inspired by Visual Cortex. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2013. http://dx.doi.org/10.21236/ada580529.
Texto completoHarmon, Dr Jennifer. Exploring the Efficacy of Active and Authentic Learning in the Visual Merchandising Classroom. Ames: Iowa State University, Digital Repository, noviembre de 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1524.
Texto completoMills, Kathy, Elizabeth Heck, Alinta Brown, Patricia Funnell y Lesley Friend. Senses together : Multimodal literacy learning in primary education : Final project report. Institute for Learning Sciences and Teacher Education, Australian Catholic University, 2023. http://dx.doi.org/10.24268/acu.8zy8y.
Texto completoYu, Wanchi. Implicit Learning of Children with and without Developmental Language Disorder across Auditory and Visual Categories. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.7460.
Texto completoNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, febrero de 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Texto completoShepiliev, Dmytro S., Yevhenii O. Modlo, Yuliia V. Yechkalo, Viktoriia V. Tkachuk, Mykhailo M. Mintii, Iryna S. Mintii, Oksana M. Markova et al. WebAR development tools: An overview. CEUR Workshop Proceedings, marzo de 2021. http://dx.doi.org/10.31812/123456789/4356.
Texto completo