Literatura académica sobre el tema "Visual cortical areas"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Visual cortical areas".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Visual cortical areas"
Pollen, Daniel A. "Cortical areas in visual awareness". Nature 377, n.º 6547 (septiembre de 1995): 293–94. http://dx.doi.org/10.1038/377293b0.
Texto completoCrick, Francis y Christof Koch. "Cortical areas in visual awareness". Nature 377, n.º 6547 (septiembre de 1995): 294–95. http://dx.doi.org/10.1038/377294a0.
Texto completoKallenberger, S., C. Schmidt, T. Wustenberg y H. Strasburger. "Visual Fusion and Binocular Rivalry in Cortical Visual Areas". Journal of Vision 10, n.º 7 (3 de agosto de 2010): 360. http://dx.doi.org/10.1167/10.7.360.
Texto completoVanni, S., L. Henriksson y A. C. James. "Multifocal fMRI mapping of visual cortical areas". NeuroImage 27, n.º 1 (agosto de 2005): 95–105. http://dx.doi.org/10.1016/j.neuroimage.2005.01.046.
Texto completoYue, Xiaomin, Sophia Robert y Leslie G. Ungerleider. "Curvature processing in human visual cortical areas". NeuroImage 222 (noviembre de 2020): 117295. http://dx.doi.org/10.1016/j.neuroimage.2020.117295.
Texto completoCortes, Nelson, Bruno O. F. de Souza y Christian Casanova. "Pulvinar Modulates Synchrony across Visual Cortical Areas". Vision 4, n.º 2 (10 de abril de 2020): 22. http://dx.doi.org/10.3390/vision4020022.
Texto completoBenoliel, Tal, Noa Raz, Tamir Ben-Hur y Netta Levin. "Cortical functional modifications following optic neuritis". Multiple Sclerosis Journal 23, n.º 2 (11 de julio de 2016): 220–27. http://dx.doi.org/10.1177/1352458516649677.
Texto completoSmith, Ikuko T., Leah B. Townsend, Ruth Huh, Hongtu Zhu y Spencer L. Smith. "Stream-dependent development of higher visual cortical areas". Nature Neuroscience 20, n.º 2 (9 de enero de 2017): 200–208. http://dx.doi.org/10.1038/nn.4469.
Texto completoYue, Xiaomin, Amisha Gandhi y Leslie Ungerleider. "Curvature-biased cortical areas in human visual cortex". Journal of Vision 15, n.º 12 (1 de septiembre de 2015): 625. http://dx.doi.org/10.1167/15.12.625.
Texto completoAndermann, Mark L., Aaron M. Kerlin, Demetris K. Roumis, Lindsey L. Glickfeld y R. Clay Reid. "Functional Specialization of Mouse Higher Visual Cortical Areas". Neuron 72, n.º 6 (diciembre de 2011): 1025–39. http://dx.doi.org/10.1016/j.neuron.2011.11.013.
Texto completoTesis sobre el tema "Visual cortical areas"
Ferro, Demetrio. "Effects of attention on visual processing between cortical layers and cortical areas V1 and V4". Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/246290.
Texto completoHeuer, Hilary Whetu. "Visual motion analysis in extrastriate cortical areas MT and MST /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2003. http://uclibs.org/PID/11984.
Texto completoFerro, Demetrio. "Effects of attention on visual processing between cortical layers and cortical areas V1 and V4". Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/246290.
Texto completoKnoblauch, Andreas [Verfasser]. "Synchronization and pattern separation in spiking associative memories and visual cortical areas / Andreas Knoblauch". Ulm : Universität Ulm. Fakultät für Informatik, 2004. http://d-nb.info/1015438466/34.
Texto completoGieselmann, Marc Alwin. "The role of the primate cortical middle temporal area in visually guided hand movements". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97349655X.
Texto completoTard, Céline. "Modulation corticale de la locomotion". Thesis, Lille 2, 2015. http://www.theses.fr/2015LIL2S067/document.
Texto completoPatients with Parkinson 's disease present gait impairments, sometimes sudden and unexpected, either improved or deteriorated with environmental stimuli. Attention focalization, either on external stimuli or on gait, could then modulate locomotion.The main objective was to better characterize how environmental stimuli would modulate locomotion, via attentional networks, in healthy subjects and in parkinsonian patients, with or without freezing of gait.At first, we precisely defined the attentional deficits in patients, with or without gait impairment. They showed altered performance respectively in mental flexibility and in divided attention.Then, we explored the attention-locomotion interaction by studying motor preparation. So, we highlighted that anticipatory postural adjustments were a sensitive marker of attention. In patients, they evidenced an alteration of the attention-motor program interaction.Studying the brain activation during the visuo-driven locomotion in these patients confirmed the involvement of cortical attentional regions. We observed an imbalance inside the parieto-premotor network (useful to modulate motor action according external stimuli)Finally, we tried to change the excitability of the premotor cortex with transcranial magnetic stimulation to modulate visuo-driven locomotion
McKeefry, D. J., M. P. Burton, C. Vakrou, B. T. Barrett y A. B. Morland. "Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A". 2008. http://hdl.handle.net/10454/6093.
Texto completoD'Souza, Dany V. [Verfasser]. "An fMRI study of chromatic processing in humans : spatial and temporal characteristics of the cortical visual areas / submitted by Dany V. D'Souza". 2009. http://d-nb.info/1000161021/34.
Texto completoPedersini, Caterina Annalaura. "The neural basis of residual vision and attention in the blind field of hemianopic patients: behavioural, electrophysiological and neuroimaging evidence". Doctoral thesis, 2016. http://hdl.handle.net/11562/939354.
Texto completoHemianopia is a visual field defect characterized by blindness in the hemifield contralateral to the side of a lesion of the central visual pathway. Despite this loss of vision, it has been shown that some unconscious visual abilities (“blindsight”) might be present in the blind field; the probability of finding this phenomenon can be increased by presenting moving stimuli in the blind field which activate the motion visual area (hMT), bypassing the damaged primary visual area (V1). As a consequence, visually guided behaviour is made possible but perceptual awareness is lacking. The present research project consists of three experimental sessions carried out with six hemianopic patients and healthy participants, in order to explore the neural basis of blindsight or residual vision, to assess whether unseen visual stimuli presented to the blind field can evoke neural responses in the lesioned or intact hemisphere and to evaluate whether shifts of spatial attention to the blind field can enhance these responses as well as the behavioral performance. In the first session we assessed the presence of blindsight or conscious residual vision by testing for the presence of unconscious above chance performance in motion and orientation discrimination tasks with stimuli presented to the blind area. We found evidence of unconscious above chance performance in one patient (L.F.) in the Motion Discrimination Task. In this case the above chance performance was associated with a feeling of something occurring on the screen, reported by the patient that resembles the so-called Blindsight Type II. In the second session we used a neuroimaging technique with the purpose of: i) assess the presence of abnormalities in the cortical representation of the blind visual field in the visual cortex, ii) evaluate position and activation of area hMT and iii) assess the structural connectivity and the integrity of white matter fibers in the same patient. To do that, by using a 3 Tesla Scanner, we carried out a fMRI session with Retinotopic Mapping, hMT Localizer and Diffusion Tensor Imaging procedures (DTI). In patient A.G. we found a retinotopic organization of low-level visual areas in the blind as well as in the intact hemisphere, despite the lesion involving mainly the dorsal portion of the left primary visual cortex. Importantly, we documented an activation of area hMT in the damaged hemisphere and the integrity of the entire visual pathways except for the optic radiations in the area of the lesion. In the third session we used an electrophysiological approach to study the neural basis of attention in the blind field of hemianopics. In order to obtain a reliable response with stimuli presented to the blind field, we used the Steady-State Evoked-Potentials (SSVEP) technique that is likely to be more informative than transient Visual Evoked Potentials in these kind of patients. This session included a passive stimulation and an attentional task. The former was performed to assess the response to stimuli flickering at a specific frequency in four visual field quadrants, two in the left and two in the right hemifield. In this session, we found in all hemianopic patients that visual stimuli presented to the blind hemifield produced a modulation of the neural response involving the damaged as well as the intact hemisphere. In the attentional task we found that orienting attention toward the blind field yielded an enhanced evoked response with respect to the non-orienting condition, even toward the blind field despite lack of perceptual awareness. Thus, SSVEP confirmed to be a useful means to assess a neural response following stimulus presentation in a blind field. In a broader perspective these results represent novel interesting evidence on the neural bases of unconscious vision in that they show that despite being unseen visual stimuli presented to the blind field elicit reliable neural activity in various cortical areas.
Bair, Wyeth. "Analysis of temporal structure in spike trains of visual cortical area MT". Thesis, 1996. https://thesis.library.caltech.edu/7600/2/Bair%201996.pdf.
Texto completoThe temporal structure of neuronal spike trains in the visual cortex can provide detailed information about the stimulus and about the neuronal implementation of visual processing. Spike trains recorded from the macaque motion area MT in previous studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are analyzed here in the context of the dynamic random dot stimulus which was used to evoke them. If the stimulus is incoherent, the spike trains can be highly modulated and precisely locked in time to the stimulus. In contrast, the coherent motion stimulus creates little or no temporal modulation and allows us to study patterns in the spike train that may be intrinsic to the cortical circuitry in area MT. Long gaps in the spike train evoked by the preferred direction motion stimulus are found, and they appear to be symmetrical to bursts in the response to the anti-preferred direction of motion. A novel cross-correlation technique is used to establish that the gaps are correlated between pairs of neurons. Temporal modulation is also found in psychophysical experiments using a modified stimulus. A model is made that can account for the temporal modulation in terms of the computational theory of biological image motion processing. A frequency domain analysis of the stimulus reveals that it contains a repeated power spectrum that may account for psychophysical and electrophysiological observations.
Some neurons tend to fire bursts of action potentials while others avoid burst firing. Using numerical and analytical models of spike trains as Poisson processes with the addition of refractory periods and bursting, we are able to account for peaks in the power spectrum near 40 Hz without assuming the existence of an underlying oscillatory signal. A preliminary examination of the local field potential reveals that stimulus-locked oscillation appears briefly at the beginning of the trial.
Libros sobre el tema "Visual cortical areas"
Saalmann, Yuri B. y Sabine Kastner. Neural Mechanisms of Spatial Attention in the Visual Thalamus. Editado por Anna C. (Kia) Nobre y Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.013.
Texto completoCohen, Marlene R. y John H. R. Maunsell. Neuronal Mechanisms of Spatial Attention in Visual Cerebral Cortex. Editado por Anna C. (Kia) Nobre y Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.007.
Texto completoClark, Kelsey L., Behrad Noudoost, Robert J. Schafer y Tirin Moore. Neuronal Mechanisms of Attentional Control. Editado por Anna C. (Kia) Nobre y Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.010.
Texto completoSchoenen, Jean, Valentin Bohotin y Alain Maertens De Noordhout. Tms in Migraine. Editado por Charles M. Epstein, Eric M. Wassermann y Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0024.
Texto completoRajan, Shobana y Vibha Mahendra. Awake Craniotomy. Editado por David E. Traul y Irene P. Osborn. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190850036.003.0003.
Texto completoAnderson, James A. The Brain Doesn’t Work by Logic. Oxford University Press, 2018. http://dx.doi.org/10.1093/acprof:oso/9780199357789.003.0008.
Texto completoPrasad, Girijesh. Brain–machine interfaces. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0049.
Texto completoButz, Martin V. y Esther F. Kutter. Primary Visual Perception from the Bottom Up. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0008.
Texto completoPinna, Baingio. On the Pinna Illusion. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0074.
Texto completoSchlaug, Gottfried. Music, musicians, and brain plasticity. Editado por Susan Hallam, Ian Cross y Michael Thaut. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199298457.013.0018.
Texto completoCapítulos de libros sobre el tema "Visual cortical areas"
Gulyás, Balázs. "Functional Organization of Human Visual Cortical Areas". En Extrastriate Cortex in Primates, 743–75. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9625-4_16.
Texto completoTaylor, N. R., M. Hartley y J. G. Taylor. "Coding of Objects in Low-Level Visual Cortical Areas". En Artificial Neural Networks: Biological Inspirations – ICANN 2005, 57–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11550822_10.
Texto completoAhlfors, S. P., H. J. Aronen, J. W. Belliveau, A. M. Dale, M. Huotilainen, R. J. Ilmoniemi, A. Korvenoja et al. "Spatiotemporal Imaging of Human Cortical Areas Sensitive to Visual Motion". En Biomag 96, 701–4. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1260-7_171.
Texto completoTroncoso, Xoana G., Stephen L. Macknik y Susana Martinez-Conde. "Vision’s First Steps: Anatomy, Physiology, and Perception in the Retina, Lateral Geniculate Nucleus, and Early Visual Cortical Areas". En Visual Prosthetics, 23–57. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-0754-7_2.
Texto completoRolls, Edmund T. "Information Processing in the Temporal Lobe Visual Cortical Areas of Macaques". En Research Notes in Neural Computing, 339–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84545-1_22.
Texto completoHogan, Dale y Nancy E. J. Berman. "Emergence of Visual Cortical Areas: Patterns of Development of Neuropeptide-Y Immunoreactivity and Somatostatin-Immunoreactivity in the Cat". En The Changing Visual System, 385–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3390-0_33.
Texto completoGattass, R., A. P. B. Sousa y E. Covey. "Cortical Visual Areas of the Macaque: Possible Substrates for Pattern Recognition Mechanisms". En Experimental Brain Research Supplementum, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-09224-8_1.
Texto completoBrodal, Per y Jan G. Bjaalie. "Quantitative Studies of Pontine Projections from Visual Cortical Areas in the Cat". En Cerebellum and Neuronal Plasticity, 41–62. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0965-9_3.
Texto completoEckhorn, Reinhard, Thomas Schanze, Michael Brosch, Wageda Salem y Roman Bauer. "Stimulus-Specific Synchronizations in Cat Visual Cortex: Multiple Microelectrode and Correlation Studies from Several Cortical Areas". En Induced Rhythms in the Brain, 47–80. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-1281-0_3.
Texto completoVaina, Lucia Maria, Finnegan Calabro, Fa-Hsuan Lin y Matti S. Hämäläinen. "Long-Range Coupling of Prefrontal Cortex and Visual (MT) or Polysensory (STP) Cortical Areas in Motion Perception". En IFMBE Proceedings, 298–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12197-5_69.
Texto completoActas de conferencias sobre el tema "Visual cortical areas"
Baseler, H. A., B. A. Wandell, A. B. Morland, S. R. Jones y K. H. Ruddock. "Activity in the visual cortex of a hemianope measured using fMRI". En Vision Science and its Applications. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/vsia.1997.suc.3.
Texto completoMovshon, J. Anthony. "Organization of primate visual cortex". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuj1.
Texto completoROLLS, EDMUND T. "FUNCTIONS OF THE PRIMATE TEMPORAL LOBE CORTICAL VISUAL AREAS IN INVARIANT VISUAL OBJECT AND FACE RECOGNITION". En Proceedings of the International School of Biophysics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799975_0035.
Texto completoGilbert, Charles. "Color processing in visual cortex". En Advances in Color Vision. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/acv.1992.fc1.
Texto completoCarney, Thom, Justin Ales y Stanley A. Klein. "Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas". En Electronic Imaging 2008, editado por Bernice E. Rogowitz y Thrasyvoulos N. Pappas. SPIE, 2008. http://dx.doi.org/10.1117/12.773383.
Texto completoROLLS, EDMUND T. "FUNCTIONS OF THE PRIMATE TEMPORAL LOBE CORTICAL VISUAL AREAS IN INVARIANT VISUAL OBJECT AND FACE RECOGNITION: COMPUTATIONAL MECHANISMS". En Proceedings of the International School of Biophysics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799975_0036.
Texto completoCronin-Golomb, Alice, S. Corkin y J. H. Growdon. "Alzheimer’s disease: a disorder of the precortical visual system?" En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.tut1.
Texto completoCarman, George J. "The function of topography in the visual pathway". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.fo6.
Texto completoShipley, Thorne. "Visual contours in homogeneous space: revisited". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wcc8.
Texto completoSereno, Margaret E. "Neural network model for the measurement of visual motion". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.wi4.
Texto completo