Literatura académica sobre el tema "Visual and semantic embedding"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Visual and semantic embedding".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Visual and semantic embedding"
Zhang, Yuanpeng, Jingye Guan, Haobo Wang, Kaiming Li, Ying Luo y Qun Zhang. "Generalized Zero-Shot Space Target Recognition Based on Global-Local Visual Feature Embedding Network". Remote Sensing 15, n.º 21 (28 de octubre de 2023): 5156. http://dx.doi.org/10.3390/rs15215156.
Texto completoYeh, Mei-Chen y Yi-Nan Li. "Multilabel Deep Visual-Semantic Embedding". IEEE Transactions on Pattern Analysis and Machine Intelligence 42, n.º 6 (1 de junio de 2020): 1530–36. http://dx.doi.org/10.1109/tpami.2019.2911065.
Texto completoMerkx, Danny y Stefan L. Frank. "Learning semantic sentence representations from visually grounded language without lexical knowledge". Natural Language Engineering 25, n.º 4 (julio de 2019): 451–66. http://dx.doi.org/10.1017/s1351324919000196.
Texto completoZhou, Mo, Zhenxing Niu, Le Wang, Zhanning Gao, Qilin Zhang y Gang Hua. "Ladder Loss for Coherent Visual-Semantic Embedding". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 13050–57. http://dx.doi.org/10.1609/aaai.v34i07.7006.
Texto completoGe, Jiannan, Hongtao Xie, Shaobo Min y Yongdong Zhang. "Semantic-guided Reinforced Region Embedding for Generalized Zero-Shot Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 2 (18 de mayo de 2021): 1406–14. http://dx.doi.org/10.1609/aaai.v35i2.16230.
Texto completoNguyen, Huy Manh, Tomo Miyazaki, Yoshihiro Sugaya y Shinichiro Omachi. "Multiple Visual-Semantic Embedding for Video Retrieval from Query Sentence". Applied Sciences 11, n.º 7 (3 de abril de 2021): 3214. http://dx.doi.org/10.3390/app11073214.
Texto completoMATSUBARA, Takashi. "Target-Oriented Deformation of Visual-Semantic Embedding Space". IEICE Transactions on Information and Systems E104.D, n.º 1 (1 de enero de 2021): 24–33. http://dx.doi.org/10.1587/transinf.2020mup0003.
Texto completoTang, Qi, Yao Zhao, Meiqin Liu, Jian Jin y Chao Yao. "Semantic Lens: Instance-Centric Semantic Alignment for Video Super-resolution". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 6 (24 de marzo de 2024): 5154–61. http://dx.doi.org/10.1609/aaai.v38i6.28321.
Texto completoKeller, Patrick, Abdoul Kader Kaboré, Laura Plein, Jacques Klein, Yves Le Traon y Tegawendé F. Bissyandé. "What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning". ACM Transactions on Software Engineering and Methodology 31, n.º 2 (30 de abril de 2022): 1–34. http://dx.doi.org/10.1145/3485135.
Texto completoHe, Hai y Haibo Yang. "Deep Visual Semantic Embedding with Text Data Augmentation and Word Embedding Initialization". Mathematical Problems in Engineering 2021 (28 de mayo de 2021): 1–8. http://dx.doi.org/10.1155/2021/6654071.
Texto completoTesis sobre el tema "Visual and semantic embedding"
Engilberge, Martin. "Deep Inside Visual-Semantic Embeddings". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS150.
Texto completoNowadays Artificial Intelligence (AI) is omnipresent in our society. The recentdevelopment of learning methods based on deep neural networks alsocalled "Deep Learning" has led to a significant improvement in visual representation models.and textual.In this thesis, we aim to further advance image representation and understanding.Revolving around Visual Semantic Embedding (VSE) approaches, we explore different directions: We present relevant background covering images and textual representation and existing multimodal approaches. We propose novel architectures further improving retrieval capability of VSE and we extend VSE models to novel applications and leverage embedding models to visually ground semantic concept. Finally, we delve into the learning process andin particular the loss function by learning differentiable approximation of ranking based metric
Wang, Qian. "Zero-shot visual recognition via latent embedding learning". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/zeroshot-visual-recognition-via-latent-embedding-learning(bec510af-6a53-4114-9407-75212e1a08e1).html.
Texto completoFicapal, Vila Joan. "Anemone: a Visual Semantic Graph". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252810.
Texto completoSemantiska grafer har använts för att optimera olika processer för naturlig språkbehandling samt för att förbättra sökoch informationsinhämtningsuppgifter. I de flesta fall har sådana semantiska grafer konstruerats genom övervakade maskininlärningsmetoder som förutsätter manuellt kurerade ontologier såsom Wikipedia eller liknande. I denna uppsats, som består av två delar, undersöker vi i första delen möjligheten att automatiskt generera en semantisk graf från ett ad hoc dataset bestående av 50 000 tidningsartiklar på ett helt oövervakat sätt. Användbarheten hos den visuella representationen av den resulterande grafen testas på 14 försökspersoner som utför grundläggande informationshämtningsuppgifter på en delmängd av artiklarna. Vår studie visar att vår funktionalitet är lönsam för att hitta och dokumentera likhet med varandra, och den visuella kartan som produceras av vår artefakt är visuellt användbar. I den andra delen utforskar vi möjligheten att identifiera entitetsrelationer på ett oövervakat sätt genom att använda abstraktiva djupa inlärningsmetoder för meningsomformulering. De omformulerade meningarna utvärderas kvalitativt med avseende på grammatisk korrekthet och meningsfullhet såsom detta uppfattas av 14 testpersoner. Vi utvärderar negativt resultaten av denna andra del, eftersom de inte har varit tillräckligt bra för att få någon definitiv slutsats, men har istället öppnat nya dörrar för att utforska.
Jakeš, Jan. "Visipedia - Embedding-driven Visual Feature Extraction and Learning". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236120.
Texto completoGao, Jizhou. "VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONS". UKnowledge, 2013. http://uknowledge.uky.edu/cs_etds/14.
Texto completoLiu, Jingen. "Learning Semantic Features for Visual Recognition". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3358.
Texto completoPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Nguyen, Duc Minh Chau. "Affordance learning for visual-semantic perception". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2021. https://ro.ecu.edu.au/theses/2443.
Texto completoChen, Yifu. "Deep learning for visual semantic segmentation". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS200.
Texto completoIn this thesis, we are interested in Visual Semantic Segmentation, one of the high-level task that paves the way towards complete scene understanding. Specifically, it requires a semantic understanding at the pixel level. With the success of deep learning in recent years, semantic segmentation problems are being tackled using deep architectures. In the first part, we focus on the construction of a more appropriate loss function for semantic segmentation. More precisely, we define a novel loss function by employing a semantic edge detection network. This loss imposes pixel-level predictions to be consistent with the ground truth semantic edge information, and thus leads to better shaped segmentation results. In the second part, we address another important issue, namely, alleviating the need for training segmentation models with large amounts of fully annotated data. We propose a novel attribution method that identifies the most significant regions in an image considered by classification networks. We then integrate our attribution method into a weakly supervised segmentation framework. The semantic segmentation models can thus be trained with only image-level labeled data, which can be easily collected in large quantities. All models proposed in this thesis are thoroughly experimentally evaluated on multiple datasets and the results are competitive with the literature
Fan, Wei. "Image super-resolution using neighbor embedding over visual primitive manifolds /". View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20FAN.
Texto completoHanwell, David. "Weakly supervised learning of visual semantic attributes". Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687063.
Texto completoLibros sobre el tema "Visual and semantic embedding"
Endert, Alex. Semantic Interaction for Visual Analytics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02603-4.
Texto completoPaquette, Gilbert. Visual knowledge modeling for semantic web technologies: Models and ontologies. Hershey, PA: Information Science Reference, 2010.
Buscar texto completoHussam, Ali. Semantic highlighting: An approach to communicating information and knowledge through visual metadata. [s.l: The Author], 1999.
Buscar texto completoValkola, Jarmo. Perceiving the visual in cinema: Semantic approaches to film form and meaning. Jyväskylä: Jyväskylän Yliopisto, 1993.
Buscar texto completoChen, Chaomei. Effects of spatial-semantic interfaces in visual information retrieval: Three experimental studies. [Great Britain]: Resource, 2002.
Buscar texto completoK, kokula Krishna Hari, ed. Multi-secret Semantic Visual Cryptographic Protocol for Securing Image Communications: ICCS 2014. Bangkok, Thailand: Association of Scientists, Developers and Faculties, 2014.
Buscar texto completoBratko, Aleksandr. Artificial intelligence, legal system and state functions. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1064996.
Texto completoVideo segmentation and its applications. New York: Springer, 2011.
Buscar texto completoStoenescu, Livia. The Pictorial Art of El Greco. NL Amsterdam: Amsterdam University Press, 2019. http://dx.doi.org/10.5117/9789462989009.
Texto completoZhang, Yu-jin. Semantic-Based Visual Information Retrieval. IRM Press, 2006.
Buscar texto completoCapítulos de libros sobre el tema "Visual and semantic embedding"
Wang, Haoran, Ying Zhang, Zhong Ji, Yanwei Pang y Lin Ma. "Consensus-Aware Visual-Semantic Embedding for Image-Text Matching". En Computer Vision – ECCV 2020, 18–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58586-0_2.
Texto completoYang, Zhanbo, Li Li, Jun He, Zixi Wei, Li Liu y Jun Liao. "Multimodal Learning with Triplet Ranking Loss for Visual Semantic Embedding Learning". En Knowledge Science, Engineering and Management, 763–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29551-6_67.
Texto completoJiang, Zhukai y Zhichao Lian. "Self-supervised Visual-Semantic Embedding Network Based on Local Label Optimization". En Machine Learning for Cyber Security, 400–412. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20102-8_31.
Texto completoFilntisis, Panagiotis Paraskevas, Niki Efthymiou, Gerasimos Potamianos y Petros Maragos. "Emotion Understanding in Videos Through Body, Context, and Visual-Semantic Embedding Loss". En Computer Vision – ECCV 2020 Workshops, 747–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66415-2_52.
Texto completoValério, Rodrigo y João Magalhães. "Learning Semantic-Visual Embeddings with a Priority Queue". En Pattern Recognition and Image Analysis, 67–81. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36616-1_6.
Texto completoSyed, Arsal y Brendan Tran Morris. "CNN, Segmentation or Semantic Embeddings: Evaluating Scene Context for Trajectory Prediction". En Advances in Visual Computing, 706–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64559-5_56.
Texto completoSchall, Konstantin, Nico Hezel, Klaus Jung y Kai Uwe Barthel. "Vibro: Video Browsing with Semantic and Visual Image Embeddings". En MultiMedia Modeling, 665–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27077-2_56.
Texto completoChen, Yanbei y Loris Bazzani. "Learning Joint Visual Semantic Matching Embeddings for Language-Guided Retrieval". En Computer Vision – ECCV 2020, 136–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58542-6_9.
Texto completoTheodoridou, Christina, Andreas Kargakos, Ioannis Kostavelis, Dimitrios Giakoumis y Dimitrios Tzovaras. "Spatially-Constrained Semantic Segmentation with Topological Maps and Visual Embeddings". En Lecture Notes in Computer Science, 117–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87156-7_10.
Texto completoThoma, Steffen, Achim Rettinger y Fabian Both. "Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics". En Lecture Notes in Computer Science, 694–710. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68288-4_41.
Texto completoActas de conferencias sobre el tema "Visual and semantic embedding"
Li, Zheng, Caili Guo, Zerun Feng, Jenq-Neng Hwang y Xijun Xue. "Multi-View Visual Semantic Embedding". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/158.
Texto completoRen, Zhou, Hailin Jin, Zhe Lin, Chen Fang y Alan Yuille. "Multiple Instance Visual-Semantic Embedding". En British Machine Vision Conference 2017. British Machine Vision Association, 2017. http://dx.doi.org/10.5244/c.31.89.
Texto completoWehrmann, Jônatas y Rodrigo C. Barros. "Language-Agnostic Visual-Semantic Embeddings". En Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/ctd.2021.15751.
Texto completoLi, Binglin y Yang Wang. "Visual Relationship Detection Using Joint Visual-Semantic Embedding". En 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8546097.
Texto completoJi, Rongrong, Hongxun Yao, Xiaoshuai Sun, Bineng Zhong y Wen Gao. "Towards semantic embedding in visual vocabulary". En 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010. http://dx.doi.org/10.1109/cvpr.2010.5540118.
Texto completoHong, Ziming, Shiming Chen, Guo-Sen Xie, Wenhan Yang, Jian Zhao, Yuanjie Shao, Qinmu Peng y Xinge You. "Semantic Compression Embedding for Generative Zero-Shot Learning". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/134.
Texto completoPerez-Martin, Jesus, Jorge Perez y Benjamin Bustos. "Visual-Syntactic Embedding for Video Captioning". En LatinX in AI at Computer Vision and Pattern Recognition Conference 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai202106259.
Texto completoZeng, Zhixian, Jianjun Cao, Nianfeng Weng, Guoquan Jiang, Yizhuo Rao y Yuxin Xu. "Softmax Pooling for Super Visual Semantic Embedding". En 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2021. http://dx.doi.org/10.1109/iemcon53756.2021.9623131.
Texto completoZhang, Licheng, Xianzhi Wang, Lina Yao, Lin Wu y Feng Zheng. "Zero-Shot Object Detection via Learning an Embedding from Semantic Space to Visual Space". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/126.
Texto completoSong, Yale y Mohammad Soleymani. "Polysemous Visual-Semantic Embedding for Cross-Modal Retrieval". En 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00208.
Texto completoInformes sobre el tema "Visual and semantic embedding"
Kud, A. A. Figures and Tables. Reprinted from “Comprehensive сlassification of virtual assets”, A. A. Kud, 2021, International Journal of Education and Science, 4(1), 52–75. KRPOCH, 2021. http://dx.doi.org/10.26697/reprint.ijes.2021.1.6.a.kud.
Texto completoTabinskyy, Yaroslav. VISUAL CONCEPTS OF PHOTO IN THE MEDIA (ON THE EXAMPLE OF «UKRAINER» AND «REPORTERS»). Ivan Franko National University of Lviv, marzo de 2021. http://dx.doi.org/10.30970/vjo.2021.50.11099.
Texto completoMbani, Benson, Timm Schoening y Jens Greinert. Automated and Integrated Seafloor Classification Workflow (AI-SCW). GEOMAR, mayo de 2023. http://dx.doi.org/10.3289/sw_2_2023.
Texto completoYatsymirska, Mariya. SOCIAL EXPRESSION IN MULTIMEDIA TEXTS. Ivan Franko National University of Lviv, febrero de 2021. http://dx.doi.org/10.30970/vjo.2021.49.11072.
Texto completo