Literatura académica sobre el tema "Virtual cathode"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Virtual cathode".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Virtual cathode"
Hayashi, Hideki, Shien-Fong Lin, Boyoung Joung, Hrayr S. Karagueuzian, James N. Weiss y Peng-Sheng Chen. "Virtual electrodes and the induction of fibrillation in Langendorff-perfused rabbit ventricles: the role of intracellular calcium". American Journal of Physiology-Heart and Circulatory Physiology 295, n.º 4 (octubre de 2008): H1422—H1428. http://dx.doi.org/10.1152/ajpheart.00001.2008.
Texto completoRoy, Amitava, R. Menon, Vishnu Sharma, Ankur Patel, Archana Sharma y D. P. Chakravarthy. "Features of 200 kV, 300 ns reflex triode vircator operation for different explosive emission cathodes". Laser and Particle Beams 31, n.º 1 (27 de noviembre de 2012): 45–54. http://dx.doi.org/10.1017/s026303461200095x.
Texto completoNikolski, Vladimir P., Aleksandre T. Sambelashvili y Igor R. Efimov. "Mechanisms of make and break excitation revisited: paradoxical break excitation during diastolic stimulation". American Journal of Physiology-Heart and Circulatory Physiology 282, n.º 2 (1 de febrero de 2002): H565—H575. http://dx.doi.org/10.1152/ajpheart.00544.2001.
Texto completoCapeáns, M., W. Dominik, M. Hoch, L. Ropelewski, F. Sauli, L. Shekhtman y A. Sharma. "The virtual cathode chamber". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 400, n.º 1 (noviembre de 1997): 17–23. http://dx.doi.org/10.1016/s0168-9002(97)00947-9.
Texto completoChoi, Eun Ha, Kew Yong Sung, Wook Jeon y Yoon Jung. "Axially Extracted Virtual Cathode Oscillator with Annular Cathode". IEEJ Transactions on Fundamentals and Materials 124, n.º 9 (2004): 773–78. http://dx.doi.org/10.1541/ieejfms.124.773.
Texto completoFiala, Pavel. "Pulse-powered virtual cathode oscillator". IEEE Transactions on Dielectrics and Electrical Insulation 18, n.º 4 (agosto de 2011): 1046–53. http://dx.doi.org/10.1109/tdei.2011.5976094.
Texto completoBelomyttsev, S. Ya, A. A. Grishkov, S. A. Kitsanov, I. K. Kurkan, S. D. Polevin, V. V. Ryzhov y R. V. Tsygankov. "Measuring the virtual cathode velocity". Technical Physics Letters 34, n.º 7 (julio de 2008): 546–48. http://dx.doi.org/10.1134/s106378500807002x.
Texto completoChen, Y., J. Mankowski, J. Walter, M. Kristiansen y R. Gale. "Cathode and Anode Optimization in a Virtual Cathode Oscillator". IEEE Transactions on Dielectrics and Electrical Insulation 14, n.º 4 (agosto de 2007): 1037–44. http://dx.doi.org/10.1109/tdei.2007.4286545.
Texto completoSze, H., J. Benford y W. Woo. "High-power microwave emission from a virtual cathode oscillator". Laser and Particle Beams 5, n.º 4 (noviembre de 1987): 675–81. http://dx.doi.org/10.1017/s0263034600003189.
Texto completoZhang, Yi Chen, Can Lun Li, Xin Ying Li y Hui Li. "Virtual Design and Visual Simulation of Cathode Target on Magnetron Sputtering Coater". Advanced Engineering Forum 2-3 (diciembre de 2011): 1088–92. http://dx.doi.org/10.4028/www.scientific.net/aef.2-3.1088.
Texto completoTesis sobre el tema "Virtual cathode"
Bakush, Sherif Mohamed. "The operation of LaB6 cathode in the virtual source mode". Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.583243.
Texto completoToh, Wee Kian. "Theoretical and numerical studies of a co-axial virtual cathode oscillator". Thesis, Queen Mary, University of London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411394.
Texto completoMöller, Cecilia. "Design and Experiments with High Power Microwave Sources : The Virtual Cathode Oscillator". Doctoral thesis, KTH, Rymd- och plasmafysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104794.
Texto completoQC 20121122
Bowden-Reid, Richard. "An Experimental Study of Gridded and Virtual Cathode Inertial Electrostatic Confinement Fusion Systems". Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/21070.
Texto completoHägg, Martin. "Theoretical analysis and simulation of microwave-generation from a coaxial vircator". Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316595.
Texto completoCoutinho, Sofia de Sousa. "Étude et analyse des propriétés fondamentales du dititanate de rubidium Rb2Ti2O5 pour des applications de stockage d’énergie". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS087.
Texto completoA so-called memristive system is a component whose resistance value is a function of all the electrical history, which is to say of all the charges or the flow that has passed through it. This property is likely to be used for information storage and under certain conditions for energy storage. However, rubidium dititanate (RTO) has intrinsic memristive and storage properties. The purpose of this thesis is to study and analyze the fundamental properties of RTO for energy storage applications. The fundamental study was carried out through nuclear magnetic resonance experiments, impedance spectroscopy or even charge distribution. It has allowed the demonstration of intrinsic properties such as the accumulation of negative ionic species at the anodic interface associated with the existence of a virtual cathode and the fundamental role of water in the remarkable properties of RTO. These experimental results, combined with a theoretical study, led to a microscopic model of water dissociation and conduction of mobile species within the RTO via a Grotthuss-type mechanism. Supercapacitor-like devices for electrical energy storage were then developed and characterized. The results obtained confirm the interest of RTO for this type of application with many possible avenues for improvement
Yeh, Rann Shyan y 葉任賢. "Computer Simulation Studies of Virtual Cathode Oscillator". Thesis, 1993. http://ndltd.ncl.edu.tw/handle/23626976125068421784.
Texto completoTeng, Hsuan-Hao y 鄧亘皓. "High Efficiency TE11 Mode Virtual Cathode Oscillator". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/sbrjc4.
Texto completo國立臺灣大學
物理學研究所
106
Vircator is a pulsed high power microwave source device with the advantages of simple structure, high peak power, low e-beam quality necessary and no external magnetic field, etc. However, short pulse width, frequency drift, output power instability and low beam-wave interaction is the main disadvantage of Vircator. We base on previous study [59] and use the MAGIC (PIC simulation software) for physical properties analysis and optimization of three-dimensional asymmetric coaxial structure to achieve TE11 output mode. In this thesis, we study the competition mechanism between TE11 and TM01 mode and increase the efficiency of beam-wave interaction to 7.6%, which the output frequency of 7.2GHz and the peak power of 2.78GW. In this thesis, we use numerical simulation to illustrate mode excitation mechanism which is few noticed and discussed in literatures [21-68]. We find that in the same design structure, due to the adjustment of the gap between cathode and anode and variation of the virtual cathode will affect excitation mode. It is corresponding to self-oscillation of the virtual cathode and forth-and-back motion of e-beam in diode region. Compared with literature [61], we optimize the enhanced coaxial vircator structure to improve the efficiency from 4% to 7.6%.
Lan, Yung-Chiang y 藍永強. "Study of vacuum triodes:from field emission microtriodes to virtual cathode oscillators". Thesis, 2002. http://ndltd.ncl.edu.tw/handle/05886146503999566385.
Texto completoLibros sobre el tema "Virtual cathode"
Mien-Win, Wu y He neng yan jiu suo., eds. Pulsed high-power microwaves from a virtual-cathode reflex triode. Lung-Tan, Taiwan, Republic of China: Institute of Nuclear Energy Research, 1987.
Buscar texto completoJurgen, Ronald, ed. Electronic Instrument Panel Displays. SAE International, 1998. http://dx.doi.org/10.4271/9780768002270.
Texto completoCapítulos de libros sobre el tema "Virtual cathode"
Litovko, Iryna, Alexey Goncharov, Andrew Dobrovolskyi y Iryna Naiko. "The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems". En Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99096.
Texto completoActas de conferencias sobre el tema "Virtual cathode"
Fuks, Mikhail y Edl Schamiloglu. "Magnetron with virtual cathode". En 2013 IEEE 40th International Conference on Plasma Sciences (ICOPS). IEEE, 2013. http://dx.doi.org/10.1109/plasma.2013.6633277.
Texto completoKim, Se-Hoon, Chang-Jin Lee, Jae-Ho Rhee, Young-Maan Cho, Ji-Eun Baek y Kwang-Cheol Ko. "Effects of electron beam focusing on virtual cathode formation in virtual cathode oscillator". En 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7533984.
Texto completoMagda, I. I., A. V. Pashchenko, S. S. Romanov, I. N. Shapoval y V. E. Novikov. "Theory of feedback in generators with virtual cathode. Analytical theory of virtual cathode". En 2004 14th International Crimean Conference "Microwave and Telecommunication Technology". IEEE, 2004. http://dx.doi.org/10.1109/crmico.2004.183356.
Texto completoChen, Yeong-Jer, John Mankowski, John Walter y Magne Kristiansen. "Virtual Cathode Oscillator Component Optimization". En Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium. IEEE, 2006. http://dx.doi.org/10.1109/modsym.2006.365206.
Texto completoTsang-Lang Lin, Tsang-Lang Lin, Wen-Ting Chen Wen-Ting Chen, Wen-Jong Liou Wen-Jong Liou y Yan Hu Yan Hu. "Computer simulation of virtual cathode oscillations". En 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110662.
Texto completoBadarin, Artem A., Semen A. Kurkin, Andrey V. Andreev, Alexey A. Koronovskii, Nikita S. Frolov y Alexander E. Hramov. "Virtual cathode oscillator with elliptical resonator". En 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289607.
Texto completoWang, Honggang y Yazhou Zhang. "A Virtual Cathode Oscillator with Double Cavities". En 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345841.
Texto completoJiang, Weihua. "Time-frequency analysis of virtual cathode oscillator". En 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386189.
Texto completoStephens, K. F., C. A. Ordonez y R. E. Peterkin. "Virtual cathode formations in nested-well configurations". En Non-neutral plasma physics III. AIP, 1999. http://dx.doi.org/10.1063/1.1302147.
Texto completoJiang, Weihua, Kousuke Kanbara, Syuhei Ohno, Takahiro Yuyama y Kiyoshi Yatsui. "High-Power Microwave Generation by Virtual Cathode Oscillator". En IEEE Conference Record - Abstracts. 2005 IEEE International Conference on Plasma Science. IEEE, 2005. http://dx.doi.org/10.1109/plasma.2005.359512.
Texto completoInformes sobre el tema "Virtual cathode"
Kristiansen, M. y J. Mankowski. Coaxial Virtual Cathode Enhancement. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2004. http://dx.doi.org/10.21236/ada427587.
Texto completo