Siga este enlace para ver otros tipos de publicaciones sobre el tema: Vibrating intrinsic reverberation chamber.

Artículos de revistas sobre el tema "Vibrating intrinsic reverberation chamber"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 16 mejores artículos de revistas para su investigación sobre el tema "Vibrating intrinsic reverberation chamber".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kouveliotis, N. K., P. T. Trakadas y C. N. Capsalis. "FDTD Modeling of a Vibrating Intrinsic Reverberation Chamber". Progress In Electromagnetics Research 39 (2003): 47–59. http://dx.doi.org/10.2528/pier02050804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Serra, Ramiro y Andres Rodriguez. "Vibrating Intrinsic Reverberation Chamber for Electromagnetic Compatibility Measurements". IEEE Latin America Transactions 11, n.º 1 (febrero de 2013): 389–95. http://dx.doi.org/10.1109/tla.2013.6502835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kouveliotis, N. K., P. T. Trakadas y C. N. Capsalis. "FDTD MODELING OF A VIBRATING INTRINSIC REVERBERATION CHAMBER - Abstract". Journal of Electromagnetic Waves and Applications 17, n.º 6 (enero de 2003): 849–50. http://dx.doi.org/10.1163/156939303322503394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kouveliotis, N. K., P. T. Trakadas y C. N. Capsalis. "FDTD calculation of quality factor of vibrating intrinsic reverberation chamber". Electronics Letters 38, n.º 16 (2002): 861. http://dx.doi.org/10.1049/el:20020576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cheng, Erwei, Pingping Wang, Qian Xu, Cui Meng y Rui Jia. "Design and Measurement of a Vibrating Intrinsic Reverberation Chamber Working in Tuned Mode". International Journal of Antennas and Propagation 2023 (16 de enero de 2023): 1–6. http://dx.doi.org/10.1155/2023/3466400.

Texto completo
Resumen
In this letter, a vibrating intrinsic reverberation chamber (VIRC) working in mode tuning is designed and fabricated; the designed RC is made of a highly electrically conductive silver fabric. A stepper motor is used to tune the cavity surface step by step along its normal direction, and an RC with vibrating wall is realized. The corresponding relationship between the vibrating amplitude and frequency of use is calculated. A test system is developed and the performance of VIRC is experimentally verified. Measurement results show that the measured E-field samples follow a Rician distribution, and the standard deviation of the space E-field is less than 3 dB, which meets the requirements of statistical uniformity tolerance in IEC 61000-4-21.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kouveliotis, N. K., P. T. Trakadas, I. I. Hairetakis y C. N. Capsalis. "Experimental investigation of the field conditions in a vibrating intrinsic reverberation chamber". Microwave and Optical Technology Letters 40, n.º 1 (2003): 35–38. http://dx.doi.org/10.1002/mop.11279.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kouveliotis, N. K., P. T. Trakadas y C. N. Capsalis. "Examination of field uniformity in vibrating intrinsic reverberation chamber using the FDTD method". Electronics Letters 38, n.º 3 (2002): 109. http://dx.doi.org/10.1049/el:20020076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Andrieu, Guillaume, Narjes Meddeb, Charles Jullien y Nicolas Ticaud. "Complete Framework for Frequency and Time-Domain Performance Assessment of Vibrating Intrinsic Reverberation Chambers". IEEE Transactions on Electromagnetic Compatibility 62, n.º 5 (octubre de 2020): 1911–20. http://dx.doi.org/10.1109/temc.2020.2966741.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhao, Huapeng y Zhongxiang Shen. "MODAL-EXPANSION ANALYSIS OF A MONOPOLE IN VIBRATING REVERBERATION CHAMBER". Progress In Electromagnetics Research 85 (2008): 303–22. http://dx.doi.org/10.2528/pier08090209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kouveliotis, N. K., P. T. Trakadas y C. N. Capsalis. "Theoretical investigation of the field conditions in a vibrating reverberation chamber with an unstirred component". IEEE Transactions on Electromagnetic Compatibility 45, n.º 1 (febrero de 2003): 77–81. http://dx.doi.org/10.1109/temc.2002.808072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Koukounian, Viken N. y Chris K. Mechefske. "Commissioning of an Atypical Acoustic Facility for Experimental Testing". Journal of the IEST 59, n.º 1 (1 de enero de 2016): 22–39. http://dx.doi.org/10.17764/1098-4321.59.1.22.

Texto completo
Resumen
Abstract Computational modeling (BEM, FEM, and SEA) is often implemented at different stages of the design process to optimize manufacturing and performance parameters. Computational results are typically verified experimentally. Experimental testing standards, particularly those related to vibro-acoustic testing, are defined by various agencies such as ASTM, ANSI, and ISO. An investigation proposing a new computational methodology of analyzing the vibro-acoustic behavior of an aircraft fuselage due to the turbulent boundary layer required verification of the predictions experimentally. In the face of certain limitations, an atypical acoustic facility was constructed challenging conventional standards while complying with the defined criteria of international testing standards. Principal deviations relate to the geometric requirements that recommend large volumes of certain construct, and microphone and acoustic source positioning. The calculated 95% confidence intervals compared exceptionally well against defined criteria (strictest measure is 1 for frequencies greater than 315 Hz) by averaging less than 0.4 for each test product across a frequency range that exceeded is the range specified by ASTM E90. The requirements for qualification of the reverberation chamber according to ANSI S12.51 were also satisfied, with the exception of measurements at 125 Hz and 160 Hz that observed heightened sensitivity due to near field effects and room modes. The calculated permissible ratio of decay variation showed good agreement against ASTM C423 criteria despite the intrinsic challenge of creating a diffuse and reverberant field in a confined, or constricting, volume. The last compliance measure reviewed flanking to ensure acceptable signal-to-noise ratio. It was clearly demonstrated that the silenced sound pressure levels (with the presence of the specimen) were greater than 10 dB above the background sound pressure levels (with the consequences of flanking considered). The investigation confirmed the feasibility of using an atypical acoustic facility to comply with various international testing standards. The noted deviations and shortcomings are not specific to the presented work, but are common challenges that all facilities observe.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hara, Makoto, Jianqing Wang y Frank Leferink. "Effect of Wall Shaking Amplitude on Vibrating Intrinsic Reverberation Chamber Characteristics". IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3331056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Rammal, Youssef, Guillaume Andrieu, Nicolas Ticaud, Nicolas Roger, Alexandre Laisné y Philippe Pouliguen. "Stirring Process Optimization of a Vibrating Intrinsic Reverberation Chamber Using Scattering Parameter Measurements". IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3331898.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mahiddini, Florian, Guillaume Andrieu, Nicolas Bui y Christophe Guiffaut. "Simulation of Vibrating Intrinsic Reverberation Chambers Using an FDTD Conformal Mesh". IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3259241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

HARA, Makoto, Jianqing WANG y Frank LEFERINK. "Numerical Derivation of Design Guidelines for Tightness and Shaking Amplitude of Vibrating Intrinsic Reverberation Chamber by Method of Moment". IEICE Transactions on Communications, 2023. http://dx.doi.org/10.1587/transcom.2023ebp3002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Schipper, Hans y Frank Leferink. "Degradation of Dynamic Range for Shielding Effectiveness Measurements Due to Long-Term Use of a Dual Vibrating Intrinsic Reverberation Chamber". IEEE Transactions on Electromagnetic Compatibility, 2022, 1–7. http://dx.doi.org/10.1109/temc.2022.3202352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía