Literatura académica sobre el tema "Very Large Floating Structures"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Very Large Floating Structures".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Very Large Floating Structures"
Cengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida y Alaa E. Mansour. "Very large floating structures (VLFS) Part I". Marine Structures 13, n.º 4-5 (julio de 2000): 215–16. http://dx.doi.org/10.1016/s0951-8339(00)00037-x.
Texto completoCengiz Ertekin, R., Jang Whan Kim, Koichiro Yoshida y Alaa E. Mansour. "Very large floating structures (VLFS) Part II". Marine Structures 14, n.º 1-2 (enero de 2001): 3–4. http://dx.doi.org/10.1016/s0951-8339(01)00004-1.
Texto completoNAKAHIRA, Tatsuya, Taro KAKINUMA, Ko YAMAMOTO, Kei YAMASHITA y Takahiro MURAKAMI. "Can Very Large Floating Structures Reduce Tsunami Height?" Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering) 70, n.º 2 (2014): I_911—I_915. http://dx.doi.org/10.2208/kaigan.70.i_911.
Texto completoNewman, J. N. "Efficient hydrodynamic analysis of very large floating structures". Marine Structures 18, n.º 2 (marzo de 2005): 169–80. http://dx.doi.org/10.1016/j.marstruc.2005.07.003.
Texto completoWang, C. M. y Z. Y. Tay. "Very Large Floating Structures: Applications, Research and Development". Procedia Engineering 14 (2011): 62–72. http://dx.doi.org/10.1016/j.proeng.2011.07.007.
Texto completoKagemoto, Hiroshi y Dick K. P. Yue. "Hydrodynamic interaction analyses of very large floating structures". Marine Structures 6, n.º 2-3 (enero de 1993): 295–322. http://dx.doi.org/10.1016/0951-8339(93)90025-x.
Texto completoChe, Xiling, Dayun Wang, Minglun Wang y Yingfan Xu. "Two-Dimensional Hydroelastic Analysis of Very Large Floating Structures". Marine Technology and SNAME News 29, n.º 01 (1 de enero de 1992): 13–24. http://dx.doi.org/10.5957/mt1.1992.29.1.13.
Texto completoHadizadeh Asar, Tannaz, Keyvan Sadeghi y Arefeh Emami. "Free Vibration Analysis of Very Large Rectangular Floating Structures". International Journal of coastal and offshore engineering 2, n.º 1 (1 de junio de 2018): 59–66. http://dx.doi.org/10.29252/ijcoe.2.1.59.
Texto completoErtekin, R. C., H. R. Riggs, X. L. Che y S. X. Du. "Efficient Methods for Hydroelastic Analysis of Very Large Floating Structures". Journal of Ship Research 37, n.º 01 (1 de marzo de 1993): 58–76. http://dx.doi.org/10.5957/jsr.1993.37.1.58.
Texto completoMaeda, Hisaaki, Koichi Masuda, Shogo Miyajima y Tomoki Ikoma. "Hydroelasitic Responses of Pontoon Type Very Large Floating Offshore Structures". Journal of the Society of Naval Architects of Japan 1996, n.º 180 (1996): 365–71. http://dx.doi.org/10.2534/jjasnaoe1968.1996.180_365.
Texto completoTesis sobre el tema "Very Large Floating Structures"
Carter, Benjamin. "Water-wave propagation through very large floating structures". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12031.
Texto completoCrema, Ilaria [Verfasser] y Hocine [Akademischer Betreuer] Oumeraci. "Oscillating water column wave energy converters integrated in very large floating structures / Ilaria Crema ; Betreuer: Hocine Oumeraci". Braunschweig : Technische Universität Braunschweig, 2018. http://d-nb.info/1175815357/34.
Texto completoJin, Jingzhe. "A mixed mode function : boundary element method for very large floating structure : water interaction systems excited by airplane landing impacts". Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/52018/.
Texto completoTalamini, Brandon Louis. "Simulation of deformation and fracture in very large shell structures". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103420.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 207-221).
Although advances in computing have increased the limits of three-dimensional computational solid mechanics, structural elements remain essential in the practical design of very large thin structures such as aircraft fuselages, ship hulls, automobiles, submarines, and pressure vessels. In many applications, fracture is a critical design concern, and thus the ability to numerically predict crack propagation in shells is a highly desirable goal. There are relatively few tools devoted to computational shell fracture, and of the existing approaches, there are two main defects: First, the existing methods are not scalable, in the sense of parallel computing, and consequently simulation of large structures remains out of reach. Second, while the existing approaches treat in-plane tensile failure, fracture due to transverse shearing has largely been ignored. In this thesis, a new computational framework for simulating deformation and fracture in large shell structures is presented that is well-suited to parallel computation. The scalability of the framework derives from the combination of a discontinuous Galerkin (DG) finite element method with an interface element-based cohesive zone representation of fracture. This representation of fracture permits arbitrary crack propagation, branching, and merging, without on-the-fly mesh topological changes. Furthermore, in parallel computing, this propagation algorithm is indifferent to processor boundaries. The adoption of a shear-flexible shell theory is identified as a necessary condition for modeling transverse shear failure, and the proposed method is formulated accordingly. Locking is always an issue that emerges in numerical analysis of shear-flexible shells; here, the inherent flexibility afforded by DG methods in the choice of approximation spaces is exploited to prevent locking naturally, without recourse to mixed methods or reduced integration. Hence, the DG discretization elegantly solves both the problems of scalability and locking simultaneously. A stress resultant-based cohesive zone theory is proposed that considers transverse shear, as well as bending and in-plane membrane forces. The theory is quite general, and the specification of particular constitutive relations, in the form of resultant traction-separation laws, is independent of the discretization scheme. Thus, the proposed framework should be extensible and useful for a variety of applications. A detailed description of the implementation strategy is provided, and numerical examples are presented which demonstrate the ability of the framework to capture all of the relevant modes of fracture in thin bodies. Finally, a numerical example of explosive decompression in a commercial airliner is shown as evidence that the proposed framework can successfully perform shell fracture simulations of unprecedented size.
by Brandon Louis Talamini.
Ph. D.
Gordon, Christal. "An adaptive floating-gate network using action-potential signaling". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/15683.
Texto completoKucic, Matthew R. "Analog programmable filters using floating-gate arrays". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/13755.
Texto completoTwigg, Christopher M. "Floating Gate Based Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11601.
Texto completoPonchio, Federico [Verfasser]. "Multiresolution structures for interactive visualization of very large 3D datasets / submitted by Federico Ponchio". [Clausthal-Zellerfeld] : [Univ.-Bibliothek], 2009. http://d-nb.info/997062789/34.
Texto completoGray, Jordan D. "Application of Floating-Gate Transistors in Field Programmable Analog Arrays". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7540.
Texto completoChe, Xiling. "Techniques for hydroelastic analysis of very large floating structures". Thesis, 1993. http://hdl.handle.net/10125/10007.
Texto completoLibros sobre el tema "Very Large Floating Structures"
Wang, Chien-ming. Very large floating structures. New York, NY: Taylor & Francis, 2007.
Buscar texto completoJapan) International Workshop on Very Large Floating Structures (1996 Hayama-machi. Very large floating structures: [proceedings of International Workshop on Very Large Floating Structures], Hayama, Kanagawa, Japan, November 25-28, 1996. [Kanagawa, Japan]: Ship Research Institute, Ministry of Transport, 1996.
Buscar texto completoJapan) International Workshop on Very Large Floating Structures (4th 2003 Tokyo. 4th International Workshop on Very Large Floating Structures: VLF '03, January 28-29, 2003, Tokyo, Japan. [Tokyo]: National Maritime Research Institute, 2003.
Buscar texto completoWang, C. M. y B. T. Wang, eds. Large Floating Structures. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-137-4.
Texto completoIEEE Electron Devices Society. Standards Committee., Institute of Electrical and Electronics Engineers. y IEEE-SA Standards Board, eds. IEEE standard definitions and characterization of floating gate semiconductor arrays. New York, N.Y., USA: Institute of Electrical and Electronics Engineers, 1999.
Buscar texto completoA VLSI architecture for concurrent data structures. Boston: Kluwer Academic, 1987.
Buscar texto completoIndo-Soviet, Workshop on Experiences in Large Canals and Hydraulic Structures in Subsident Swelling and Floating Soils (1986 New Delhi India). Indo-Soviet Workshop on Experiences in Large Canals and Hydraulic Structures in Subsident, Swelling, and Floating Soils, 18-19 September 1986: Proceedings. New Delhi: The Board, 1986.
Buscar texto completoMeinel, Christoph. Algorithms and data structures in VLSI design: OBDD-foundations and applications. Berlin: Springer, 1998.
Buscar texto completoInternational Conference on Very Large Data Bases (17th 1991 Barcelona, Spain). Proceedings of the Seventeenth International Conference on Very Large Data Bases: September 3-6 1991 Barcelona (Catalonia, Spain). Editado por Lohman Guy M, Sernadas Amílcar y Camps Rafael. Hove: Morgan Kaufman, 1991.
Buscar texto completoWang, C. M., E. Watanabe y T. Utsunomiya. Very Large Floating Structures. Taylor & Francis Group, 2020.
Buscar texto completoCapítulos de libros sobre el tema "Very Large Floating Structures"
Fu, Shixiao, Shuai Li y Weicheng Cui. "Very Large Floating Structures (VLFS): Overview". En Encyclopedia of Ocean Engineering, 2095–103. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-10-6946-8_335.
Texto completoFu, Shixiao, Shuai Li y Weicheng Cui. "Very Large Floating Structures (VLFS): Overview". En Encyclopedia of Ocean Engineering, 1–8. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-10-6963-5_335-1.
Texto completoNg, ChunWee y Rongrong Jiang. "Classification Principles for Very Large Floating Structures". En Lecture Notes in Civil Engineering, 235–51. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_13.
Texto completoSankalp, Aditya y Yves De Leeneer. "Mooring Systems for Very Large Floating Structures". En Lecture Notes in Civil Engineering, 253–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_14.
Texto completoPanduranga, Kottala y Santanu Koley. "Water Wave Interaction with Very Large Floating Structures". En Lecture Notes in Mechanical Engineering, 531–40. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1769-0_48.
Texto completoLu, Ye, Bei Teng, Yikun Wang, Ye Zhou, Xiaoming Cheng y Enrong Qi. "Structural Design of Hinge Connector for Very Large Floating Structures". En Lecture Notes in Civil Engineering, 197–208. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4672-3_12.
Texto completoWang, C. M. y Z. Y. Tay. "Hydroelastic Analysis and Response of Pontoon-Type Very Large Floating Structures". En Fluid Structure Interaction II, 103–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2_5.
Texto completoKakinuma, Taro y Naoto Ochi. "Tsunami-Height Reduction Using a Very Large Floating Structure". En Mathematics for Industry, 193–202. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6062-0_14.
Texto completoBispo, I. B. S., S. C. Mohapatra y C. Guedes Soares. "A review on numerical approaches in the hydroelastic responses of very large floating elastic structures". En Developments in Maritime Technology and Engineering, 425–36. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003216582-48.
Texto completoWang, C. M. y B. T. Wang. "Great Ideas Float to the Top". En Large Floating Structures, 1–36. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_1.
Texto completoActas de conferencias sobre el tema "Very Large Floating Structures"
Suzuki, H., H. R. Riggs, M. Fujikubo, T. A. Shugar, H. Seto, Y. Yasuzawa, B. Bhattacharya, D. A. Hudson y H. Shin. "Very Large Floating Structures". En ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29758.
Texto completoWang, C. M., Z. J. Yao, A. M. Hee y W. L. Tan. "Optimal Layout of Gill Cells for Very Large Floating Structures". En ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29762.
Texto completoSrinivasan, Nagan y R. Sundaravadivelu. "Ocean Space Utilization Using Very Large Floating Semi-Submersible". En ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10458.
Texto completoUtsunomiya, T. y E. Watanabe. "ACCELERATED BEM FOR WAVE RESPONSE ANALYSIS OF VERY LARGE FLOATING STRUCTURES". En Proceedings of the Second International Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776228_0079.
Texto completoKakinuma, Taro, Kei Yamashit y Keisuke Nakayama. "INTERACTION OF SURFACE AND INTERNAL WAVES WITH VERY LARGE FLOATING STRUCTURES". En Proceedings of the 6th International Conference. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814412216_0079.
Texto completoCappietti, Lorenzo, Irene Simonetti y Ilaria Crema. "Concept Design of Very Large Floating Structures and Laboratory-Scale Physical Modelling". En ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96259.
Texto completoMuhamed Basheer Naseema, Sibin y Nilanjan Saha. "Hydroelastic Response of Very Large Floating Structures (VLFS) Connected With Wind Turbines". En ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61099.
Texto completoShi, Qijia, Daolin Xu y Haicheng Zhang. "Design of a Flexible-Base Hinged Connector for Very Large Floating Structures". En ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78478.
Texto completoWang, Chien Ming, Rui Ping Gao, Chan Ghee Koh y Sritawat Kitipornchai. "Novel Hybrid System for Reducing Hydroelastic Response of Very Large Floating Structures". En ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83124.
Texto completoPapaioannou, Iason, Ruiping Gao, Ernst Rank y Chien Ming Wang. "Hydroelastic Analysis of Pontoon-Type Very Large Floating Structures in Random Seas". En 5th Asian-Pacific Symposium on Structural Reliability and its Applications. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2219-7_p319.
Texto completoInformes sobre el tema "Very Large Floating Structures"
Nash, J. G. VLSI (Very Large Scale Integration) Floating Point Chip Design Study. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1985. http://dx.doi.org/10.21236/ada164198.
Texto completoParlett, B. N., P. S. Jensen y T. Erickson. Lanczos Algorithm Applied to Modal Analysis of Very Large Structures. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1985. http://dx.doi.org/10.21236/ada160210.
Texto completoVIGIL, MANUEL GILBERT. Design of Largest Shaped Charge: Generation of Very Large Diameter, Deep Holes in Rock and Concrete Structures. Office of Scientific and Technical Information (OSTI), abril de 2003. http://dx.doi.org/10.2172/810682.
Texto completoGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay y Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, noviembre de 2020. http://dx.doi.org/10.55461/svks9397.
Texto completoLinker, Raphael, Murat Kacira, Avraham Arbel, Gene Giacomelli y Chieri Kubota. Enhanced Climate Control of Semi-arid and Arid Greenhouses Equipped with Fogging Systems. United States Department of Agriculture, marzo de 2012. http://dx.doi.org/10.32747/2012.7593383.bard.
Texto completoLazonick, William, Philip Moss y Joshua Weitz. Equality Denied: Tech and African Americans. Institute for New Economic Thinking, febrero de 2022. http://dx.doi.org/10.36687/inetwp177.
Texto completoRusso, Margherita, Fabrizio Alboni, Jorge Carreto Sanginés, Manlio De Domenico, Giuseppe Mangioni, Simone Righi y Annamaria Simonazzi. The Changing Shape of the World Automobile Industry: A Multilayer Network Analysis of International Trade in Components and Parts. Institute for New Economic Thinking Working Paper Series, enero de 2022. http://dx.doi.org/10.36687/inetwp173.
Texto completoWu, Yingjie, Selim Gunay y Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, noviembre de 2020. http://dx.doi.org/10.55461/ytgv8834.
Texto completo