Literatura académica sobre el tema "Vertical cloud overlap"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Vertical cloud overlap".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Vertical cloud overlap"
Tompkins, Adrian M. y Francesca Di Giuseppe. "An Interpretation of Cloud Overlap Statistics". Journal of the Atmospheric Sciences 72, n.º 8 (1 de agosto de 2015): 2877–89. http://dx.doi.org/10.1175/jas-d-14-0278.1.
Texto completoO’Dell, Christopher W., Peter Bauer y Ralf Bennartz. "A Fast Cloud Overlap Parameterization for Microwave Radiance Assimilation". Journal of the Atmospheric Sciences 64, n.º 11 (1 de noviembre de 2007): 3896–909. http://dx.doi.org/10.1175/2006jas2133.1.
Texto completoWu, Xiaoqing y Xin-Zhong Liang. "Radiative Effects of Cloud Horizontal Inhomogeneity and Vertical Overlap Identified from a Monthlong Cloud-Resolving Model Simulation". Journal of the Atmospheric Sciences 62, n.º 11 (1 de noviembre de 2005): 4105–12. http://dx.doi.org/10.1175/jas3565.1.
Texto completoNaud, Catherine M., Anthony Del Genio, Gerald G. Mace, Sally Benson, Eugene E. Clothiaux y Pavlos Kollias. "Impact of Dynamics and Atmospheric State on Cloud Vertical Overlap". Journal of Climate 21, n.º 8 (15 de abril de 2008): 1758–70. http://dx.doi.org/10.1175/2007jcli1828.1.
Texto completoLi, J., J. Huang, K. Stamnes, T. Wang, Q. Lv y H. Jin. "A global survey of cloud overlap based on CALIPSO and CloudSat measurements". Atmospheric Chemistry and Physics 15, n.º 1 (15 de enero de 2015): 519–36. http://dx.doi.org/10.5194/acp-15-519-2015.
Texto completoČrnivec, Nina y Bernhard Mayer. "The incorporation of the Tripleclouds concept into the <i>δ</i>-Eddington two-stream radiation scheme: solver characterization and its application to shallow cumulus clouds". Atmospheric Chemistry and Physics 20, n.º 17 (14 de septiembre de 2020): 10733–55. http://dx.doi.org/10.5194/acp-20-10733-2020.
Texto completoAstin, I. y L. Di Girolamo. "Technical Note: The horizontal scale dependence of the cloud overlap parameter α". Atmospheric Chemistry and Physics 14, n.º 18 (19 de septiembre de 2014): 9917–22. http://dx.doi.org/10.5194/acp-14-9917-2014.
Texto completoLi, J., J. Huang, K. Stamnes, T. Wang, Y. Yi, X. Ding, Q. Lv y H. Jin. "Distributions and radiative forcings of various cloud types based on active and passive satellite datasets – Part 1: Geographical distributions and overlap of cloud types". Atmospheric Chemistry and Physics Discussions 14, n.º 7 (25 de abril de 2014): 10463–514. http://dx.doi.org/10.5194/acpd-14-10463-2014.
Texto completoOreopoulos, L., D. Lee, Y. C. Sud y M. J. Suarez. "Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model". Atmospheric Chemistry and Physics 12, n.º 19 (4 de octubre de 2012): 9097–111. http://dx.doi.org/10.5194/acp-12-9097-2012.
Texto completoBrooks, Malcolm E., Robin J. Hogan y Anthony J. Illingworth. "Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar". Journal of the Atmospheric Sciences 62, n.º 7 (1 de julio de 2005): 2248–60. http://dx.doi.org/10.1175/jas3467.1.
Texto completoTesis sobre el tema "Vertical cloud overlap"
Vande, Hey Joshua D. "Design, implementation, and characterisation of a novel lidar ceilometer". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/11853.
Texto completoLebrun, Raphaël. "Modélisation du recouvrement vertical des nuages et impacts sur le rayonnement". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS405.
Texto completoRadiative transfer is a crucial process in atmospheric and climate modelling, as well as for climate change simulations. Computations of radiative fluxes at the top of the atmosphere and at the surface allow us to estimate the radaitive budget of the planet, which is very important to represent correctly when it comes to climate simulations. Many elements interact with the radiation in the atmosphere : gases, aerosols, clouds, and different types of surfaces (vegetation, oceans, snow...). These different components do not interact in the same way with solar radiation, that comes from the sun, and with infrared radiation, that comes from the earth’s surface and the atmosphere itself. In both situations, clouds, composed of liquid water droplets and/or solid water crystals, represent an important modeling difficulty. Clouds are complex objects, because of their composition, their geometry, and their multiple interactions with the radiation field. Cloud-radiation interaction has been studied for many years, and it has been shown that it represents one of the most important obstacles to the improvement of global climate models. In this work, we focus on one of the key aspects in the representation of the effect of clouds on radiation : vertical cloud overlap. This notion is indeed directly linked to the cloud cover, which is a quantity of first order importance in the calculation of the albedo of a cloud scene. Within the framework of the vertical cloud overlap, we develop a formalism allowing us to explore in depth various hypotheses of cloud overlap, in particular exponential-random overlap. We show that this overlap hypothesis can, under certain conditions, allow a very good representation of cloud properties, both geometric and radiative, even from a coarse resolution vertical cloud profile. We show that the vertical subgrid variability of the cloud fraction, although not taken into account by large-scale atmospheric models, can have a significant impact on the solar fluxes calculated at the top of the atmosphere. The rigorous consideration of vertical resolutions by the overlap is also an important factor. We then focus on incorporating these overlap results into a Monte Carlo radiative transfer code (RadForce). The use of this new algorithm, which also uses a line-by-line approach for the different atmospheric gases, allows us to model the emission altitudes of each atmospheric component. These new tools allow us to analyze in a new way the radiative forcings linked to greenhouse gases, as well as the impact of taking into account the vertical overlap of clouds and their vertical subgrid heterogeneity
Capítulos de libros sobre el tema "Vertical cloud overlap"
Bailey, Matthew P. y Joan T. Hallett. "Ice Crystals in Cirrus". En Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0007.
Texto completoEmanuel, Kerry A. "Dynamics Of Precipitating Convection". En Atmospheric Convection, 329–91. Oxford University PressNew York, NY, 1994. http://dx.doi.org/10.1093/oso/9780195066302.003.0011.
Texto completoActas de conferencias sobre el tema "Vertical cloud overlap"
Leshin, O. D. y D. S. Grigoriev. "Development of a Neural Network Model for Semantic Segmentation of Point Clouds". En 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-1084-1089.
Texto completoLee, Ming-Chun. "Case study on emerging trends in geospatial technologies for study of urban form". En 24th ISUF 2017 - City and Territory in the Globalization Age. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/isuf2017.2017.5974.
Texto completoSalamon, Todd, Roger Kempers, Brian Lynch, Kevin Terrell y Elina Simon. "Partitioned Heat Sinks for Improved Natural Convection". En ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipack2020-2553.
Texto completoSavenets, Mykhailo. "Modeling aerosol effects on the atmosphere during the April 2020 wildfire episode". En International Conference of Young Scientists on Meteorology, Hydrology and Environmental Monitoring. Ukrainian Hydrometeorological Institute, 2023. http://dx.doi.org/10.15407/icys-mhem.2023.023.
Texto completoTran, Ngoc Lam, Hamidreza Karami, Opeyemi Bello y Catalin Teodoriu. "Tailoring Digital Approaches for Monitoring and Predictive Diagnosis for Sucker Rod Pumping Systems". En SPE Artificial Lift Conference and Exhibition - Americas. SPE, 2022. http://dx.doi.org/10.2118/209762-ms.
Texto completoKhan, Sara Hasrat, Wardah Arina Nasir, Hany El Sahn, Hartoyo Sudiro, Mohamed Abdulhammed AlWahedi, Suhaila Humaid AlMazrooei, Christoph Lehmann et al. "Innovative High Permeability Streak Characterization and Modeling Utilizing Static and Dynamic Data in a Complex Giant Mature Oil Field in the Middle East". En Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207310-ms.
Texto completo