Artículos de revistas sobre el tema "Verres à quantum dots"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Verres à quantum dots.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Verres à quantum dots".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mujala, Abdul, Muhammad Reza y Kana Puspita. "Atomic Structure and Its Connection to The Quranic Verses' Context". Elkawnie 9, n.º 1 (18 de agosto de 2023): 48. http://dx.doi.org/10.22373/ekw.v9i1.14842.

Texto completo
Resumen
Abstract: The growth of science in the twenty-first century, particularly in chemistry, is critically dependent on the integration of science and the Qur'an. Since numerous verses in the Qur'an disclose the fundamental principles of chemistry, such as the size of an atom, the integration of science and the Qur'an is nothing new in modern science, especially chemistry. As a result, this article will go into further detail regarding the atomic structure's physical setting and how it relates to Qur'anic verses. Writing this paper involved conducting literature searches on both contemporary science and Qur'anic interpretations of atomic structure. The word "dzarrah" appears in QS Az-Zalzalah verses 7-8, An-Nisa verse 40, and Yunus verse 61, and is interpreted as the size of a mustard seed that the human intellect may yet attain. However, "dzarrah" is often frequently interpreted as atomic size, since the atomic radius of the smallest atom (Hydrogen) and biggest atom (Organesson) atoms are 1.2 x 10-10 m and 1.52 x 10-10 m, respectively, with 1 million being smaller than the radius of mustard seed (5 x 10-4 m). Thus, the word dzarrah, which is translated as the size of a mustard seed, is less proportional to describe a much smaller atomic size. This atomic scale later served as a precursor for new developments in chemical research, such as nanomaterials and quantum dots.Abstrak: Integrasi sains dan Al-Qur’an menjadi dasar yang penting untuk pengembangan ilmu sains pada abad ke-21, khususnya dalam ilmu kimia. Integrasi sains dengan Al-Qur’an sebetulnya bukanlah hal baru dalam sains modern, khususnya kimia, karena ada banyak ayat-ayat Al-Qur’an yang mengungkapkan tentang konsep dasar kimia, misalnya ukuran atom. Oleh karena itu, artikel ini akan membahas secara lebih jelas tentang konteks materi struktur atom dan kaitannya dengan ayat-ayat Al-Qur’an. Metode penulisan artikel ini menggunakan kajian literatur, baik itu dari segi sains modern dan tafsir Al-Qur’an tentang struktur atom. Kata “dzarrah” muncul dalam QS Az-Zalzalah ayat 7-8, QS An-Nisa ayat 40, dan QS Yunus ayat 61, yang ditafsirkan seukuran biji sawi yang ukurannya masih dapat dijangkau oleh pikiran manusia. Namun, “dzarrah” juga kerap diterjemahkan seukuran atom, padahal jari-jari 1 atom paling kecil (Hidrogen) dan paling besar (Organesson) berturut-turut adalah 1,2 x 10-10 m dan 1,52 x 10-10 m, dimana 1 juta lebih kecil dari jari-jari biji sawi (5 x 10-4 m). Sehingga kata dzarrah yang diterjemahkan sebagai ukuran biji sawi kurang proporsional untuk menggambarkan ukuran atom yang jauh lebih kecil. Ukuran atom ini kemudian menjadi cikal bakal perkembangan penelitian di bidang kimia, misalnya nanomaterial dan quantum dots.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kouwenhoven, Leo y Charles Marcus. "Quantum dots". Physics World 11, n.º 6 (junio de 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Reed, Mark A. "Quantum Dots". Scientific American 268, n.º 1 (enero de 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Artemyev, M. V. y U. Woggon. "Quantum dots in photonic dots". Applied Physics Letters 76, n.º 11 (13 de marzo de 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Loss, Daniel y David P. DiVincenzo. "Quantum computation with quantum dots". Physical Review A 57, n.º 1 (1 de enero de 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

López, Juan Carlos. "Quantum leap for quantum dots". Nature Reviews Neuroscience 4, n.º 3 (marzo de 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zunger, Alex. "Semiconductor Quantum Dots". MRS Bulletin 23, n.º 2 (febrero de 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Texto completo
Resumen
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Barachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, n.º 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Texto completo
Resumen
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Barachevsky, V. A. "Photochromic Quantum Dots". Russian Physics Journal 64, n.º 11 (marzo de 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Evanko, Daniel. "Bioluminescent quantum dots". Nature Methods 3, n.º 4 (abril de 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lindberg, V. y B. Hellsing. "Metallic quantum dots". Journal of Physics: Condensed Matter 17, n.º 13 (19 de marzo de 2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kaputkina, N. E. y Yu E. Lozovik. "“Spherical” quantum dots". Physics of the Solid State 40, n.º 11 (noviembre de 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Dukes, Albert D., James R. McBride y Sandra Rosenthal. "Luminescent Quantum Dots". ECS Transactions 33, n.º 33 (17 de diciembre de 2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Tinkham, M. "Metallic quantum dots". Philosophical Magazine B 79, n.º 9 (septiembre de 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin y Bruce E. Cohen. "Caged Quantum Dots". Journal of the American Chemical Society 130, n.º 47 (26 de noviembre de 2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Pile, David. "Intraband quantum dots". Nature Photonics 9, n.º 1 (23 de diciembre de 2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Guyot-Sionnest, Philippe. "Colloidal quantum dots". Comptes Rendus Physique 9, n.º 8 (octubre de 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zhou, Weidong y James J. Coleman. "Semiconductor quantum dots". Current Opinion in Solid State and Materials Science 20, n.º 6 (diciembre de 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Gershoni, David. "Pyramidal quantum dots". Nature Photonics 4, n.º 5 (mayo de 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Nomura, Masahiro y Yasuhiko Arakawa. "Shaking quantum dots". Nature Photonics 6, n.º 1 (22 de diciembre de 2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein y John L. Hutchison. "Electrodeposited quantum dots". Surface Science 311, n.º 1-2 (mayo de 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev y A. L. Aseev. "AlInAs quantum dots". JETP Letters 105, n.º 2 (enero de 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati y C. N. R. Rao. "Phosphorene quantum dots". Chemical Physics Letters 699 (mayo de 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

H. Sargent, E. "Infrared Quantum Dots". Advanced Materials 17, n.º 5 (8 de marzo de 2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Nozik, A. J., H. Uchida, P. V. Kamat y C. Curtis. "GaAs Quantum Dots". Israel Journal of Chemistry 33, n.º 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bacon, Mitchell, Siobhan J. Bradley y Thomas Nann. "Graphene Quantum Dots". Particle & Particle Systems Characterization 31, n.º 4 (27 de noviembre de 2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tárnok, Attila. "Quantum of dots". Cytometry Part A 77A, n.º 10 (24 de septiembre de 2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce y S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots". Optics and Photonics News 13, n.º 12 (1 de diciembre de 2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto y Akira Endo. "Quantum Charge Fluctuations in Quantum Dots". Journal of the Physical Society of Japan 69, n.º 3 (15 de marzo de 2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Burkard, Guido, Daniel Loss y David P. DiVincenzo. "Coupled quantum dots as quantum gates". Physical Review B 59, n.º 3 (15 de enero de 1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Lozada-Cassou, M., Shi-Hai Dong y Jiang Yu. "Quantum features of semiconductor quantum dots". Physics Letters A 331, n.º 1-2 (octubre de 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Molotkov, S. N. y S. S. Nazin. "Quantum cryptography based on quantum dots". Journal of Experimental and Theoretical Physics Letters 63, n.º 8 (abril de 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh y D. Vasileska. "Quantum transport in ballistic quantum dots". Physica E: Low-dimensional Systems and Nanostructures 3, n.º 1-3 (octubre de 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu y A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n.º 2 (26 de febrero de 2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Pachos, Jiannis K. y Vlatko Vedral. "Topological quantum gates with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n.º 6 (16 de octubre de 2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin y Irina A. Yugova. "Quantum beats in semiconductor quantum dots". Journal of Luminescence 108, n.º 1-4 (junio de 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls y Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie 124, n.º 50 (7 de noviembre de 2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Bryant, Garnett W. "Quantum dots in quantum well structures". Journal of Luminescence 70, n.º 1-6 (octubre de 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei y Jianxin Zhong. "Quantum confinement in graphene quantum dots". physica status solidi (RRL) - Rapid Research Letters 8, n.º 5 (31 de marzo de 2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls y Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie International Edition 51, n.º 50 (7 de noviembre de 2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth y Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)". Small 11, n.º 38 (octubre de 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Yong, Ken-Tye. "Quantum Dots for Biophotonics". Theranostics 2, n.º 7 (2012): 629–30. http://dx.doi.org/10.7150/thno.4757.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zhao, Rongzheng, Shuhao Liu, Xuewen Zhao, Mengyue Gu, Yuhao Zhang, Mengting Jin, Yanhao Wang, Yonghong Cheng y Jinying Zhang. "Violet phosphorus quantum dots". Journal of Materials Chemistry A 10, n.º 1 (2022): 245–50. http://dx.doi.org/10.1039/d1ta09132h.

Texto completo
Resumen
Violet phosphorus quantum dots have been produced for the first time, which are effective fluorescent probes to selectively detect Cu2+. The morphology, microstructure and fluorescence properties have been tuned using synthesis parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Xing, Ming, Huaibin Shen, Wei Zhao, Yanfei Liu, Yingda Du, Zhenxiang Yu y Xia Chen. "dsDNA-coated quantum dots". BioTechniques 50, n.º 4 (abril de 2011): 259–61. http://dx.doi.org/10.2144/000113650.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Han, Chang-Yeol, Hyun-Sik Kim y Heesun Yang. "Quantum Dots and Applications". Materials 13, n.º 4 (18 de febrero de 2020): 897. http://dx.doi.org/10.3390/ma13040897.

Texto completo
Resumen
It is the unique size-dependent band gap of quantum dots (QDs) that makes them so special in various applications. They have attracted great interest, especially in optoelectronic fields such as light emitting diodes and photovoltaic cells, because their photoluminescent characteristics can be significantly improved via optimization of the processes by which they are synthesized. Control of their core/shell heterostructures is especially important and advantageous. However, a few challenges remain to be overcome before QD-based devices can completely replace current optoelectronic technology. This Special Issue provides detailed guides for synthesis of high-quality QDs and their applications. In terms of fabricating devices, tailoring optical properties of QDs and engineering defects in QD-related interfaces for higher performance remain important issues to be addressed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Prevenslik, Thomas. "Quantum Dots by QED". Advanced Materials Research 31 (noviembre de 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.

Texto completo
Resumen
High quantum dot (QD) efficiency may be explained by excitons generated in the quantum electrodynamics (QED) confinement of electromagnetic (EM) radiation during the absorption of the laser radiation. There is general agreement that by the Mie theory laser photons are fully absorbed by QDs smaller than the laser wavelength. But how the absorbed laser photons are conserved by a QD is another matter. Classically, absorbed laser radiation is treated as heat that in a body having specific heat is conserved by an increase in temperature. However, the specific heats of QDs vanish at frequencies in the near infrared (NIR) and higher, and therefore an increase in temperature cannot conserve the absorbed laser photons. Instead by QED, the laser photon energy is first suppressed because the photon frequency is lower than the EM confinement frequency imposed by the QD geometry. To conserve the loss of suppressed EM energy, an equivalent gain must occur. But the only EM energy allowed in a QED confinement has a frequency equal to or greater than its EM resonance, and therefore the laser photons are then up-converted to the QD confinement frequency - the process called cavity QED induced EM radiation. High QD efficiency is the consequence of multiple excitons generated in proportion to very high QED induced Planck energy because at the nanoscale the EM confinement frequencies range from the vacuum ultraviolet (VUV) to soft x-rays (SXRs). Extensions of QED induced EM radiation are made to surface enhanced Raman spectroscopy (SERS) and light emission from porous silicon (PS).
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Smith, Andrew M. y Shuming Nie. "Next-generation quantum dots". Nature Biotechnology 27, n.º 8 (agosto de 2009): 732–33. http://dx.doi.org/10.1038/nbt0809-732.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Viswanath, V. y S. Sayeeda Malaika. "OVERVIEW OF QUANTUM DOTS". International Journal of Pharmacy and Technology 12, n.º 01 (31 de marzo de 2020): 31895–916. http://dx.doi.org/10.32318/ijpt/0975-766x/12(1).31895-31916.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Khalessi, Alexander A., Charles Y. Liu y Michael L. J. Apuzzo. "NEUROSURGERY AND QUANTUM DOTS". Neurosurgery 64, n.º 6 (1 de junio de 2009): 1015–28. http://dx.doi.org/10.1227/01.neu.0000347889.62762.3f.

Texto completo
Resumen
Abstract THIS ARTICLE REPRESENTS the first of a 2-part exploration of quantum dots (Qdots) and their application to neurological surgery. Spanning from materials science to immunology, this initial review traces the marriage of imaging physics to biochemical specificity. Qdot science now stands poised to dramatically advance the diagnosis and therapy of neurosurgical conditions. Qdot research efforts currently involve several disciplines; this comprehensive review therefore considers multiple fields of inquiry. This first installment discusses 1) Qdot physical properties, 2) established biological and in vivo properties, 3) magnetic resonance imaging applications, and (4) existing cardiovascular and oncologic research. Finally, this review establishes the existing bounds of Qdot possibilities. The second concept article details future endovascular diagnostic and therapeutic methods derived from these seminal advances.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, C. "Electrochromic Nanocrystal Quantum Dots". Science 291, n.º 5512 (23 de marzo de 2001): 2390–92. http://dx.doi.org/10.1126/science.291.5512.2390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía