Artículos de revistas sobre el tema "Velocity"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Velocity.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Velocity".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas y G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, n.º 5 (mayo de 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng y In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, n.º 1 (30 de enero de 2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.

Texto completo
Resumen
Surface velocity measurement using electromagnetic waves is common in flood season discharge surveys in Korea. In order to expand the relatively safe non-contact discharge survey, this study investigated the reliability of the coefficient that converts surface velocity to mean velocity in rivers and waterways. Surface and mean velocity were investigated for agricultural reservoir spillways, gravel rivers, and irrigation canals, and the volumetric capacity of agricultural reservoirs was confirmed. As a result of the investigation, the mean velocity conversion coefficients according to the riverbed slope or riverbed material were very diverse, such as 0.61, 0.90, 0.52, and 0.88. The above result makes it clear that each investigation point has a unique conversion coefficient according to the characteristics of the bed material. In other words, accurate discharge investigation is possible by knowing the unique conversion factor to each point. The importance of water management due to climate change is increasing day by day. Accurate flow rate for rivers and waterways will be used as an essential factor for quantitative water resource management in the future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Cojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, n.º 9 (5 de septiembre de 2019): 275–82. http://dx.doi.org/10.21275/art2020906.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Byun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, n.º 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wang, Hongsong, Liang Wang, Jiashi Feng y Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (abril de 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rowell, A. L., C. S. Williams y D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine &amp Science in Sports &amp Exercise 28, Supplement (mayo de 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, n.º 8 (agosto de 2003): 14. http://dx.doi.org/10.1063/1.1611340.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

SAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, n.º 01 (enero de 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.

Texto completo
Resumen
The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Haitjema, Henk M. y Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, n.º 1 (30 de noviembre de 2015): 1. http://dx.doi.org/10.1111/gwat.12386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

AYAKO, Yagi, Hiroshi TAKIMOTO, Chusei FUJIWARA, Atsushi INAGAKI, Yasushi FUJIYOSHI y Manabu KANDA. "ESTIMATION OF CIRCUMFERENTIAL VELOCITY FROM OBSERVED RADIAL VELOCITY---Velocity Image Velocimetry(VIV)---". Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 68, n.º 4 (2012): I_1783—I_1788. http://dx.doi.org/10.2208/jscejhe.68.i_1783.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

ROTARU, Constantin. "NUMERICAL SOLUTIONS FOR COMBUSTION WAVE VELOCITY". SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, n.º 1 (8 de octubre de 2019): 184–93. http://dx.doi.org/10.19062/2247-3173.2019.21.25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Roh, Young-Sin, Byungman Yoon y Kwonkyu Yu. "Estimatation of Mean Velocity from Surface Velocity". Journal of Korea Water Resources Association 38, n.º 11 (1 de noviembre de 2005): 917–25. http://dx.doi.org/10.3741/jkwra.2005.38.11.917.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

McDermott, G. "Velocity index factor sensitivity to velocity distribution". Australasian Journal of Water Resources 12, n.º 3 (enero de 2008): 205–22. http://dx.doi.org/10.1080/13241583.2008.11465348.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hill, Reginald J. "Pressure–velocity–velocity statistics in isotropic turbulence". Physics of Fluids 8, n.º 11 (noviembre de 1996): 3085–93. http://dx.doi.org/10.1063/1.869082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Fomel, Sergey. "Time‐migration velocity analysis by velocity continuation". GEOPHYSICS 68, n.º 5 (septiembre de 2003): 1662–72. http://dx.doi.org/10.1190/1.1620640.

Texto completo
Resumen
Time‐migration velocity analysis can be performed by velocity continuation, an incremental process that transforms migrated seismic sections according to changes in the migration velocity. Velocity continuation enhances residual normal moveout correction by properly taking into account both vertical and lateral movements of events on seismic images. Finite‐difference and spectral algorithms provide efficient practical implementations for velocity continuation. Synthetic and field data examples demonstrate the performance of the method and confirm theoretical expectations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Suzuki, Takahiko. "Angular velocity sensor and angular velocity detector". Journal of the Acoustical Society of America 123, n.º 1 (2008): 19. http://dx.doi.org/10.1121/1.2832822.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Dong, Li-yun, Xu-dan Weng y Qing-ding Li. "Velocity anticipation in the optimal velocity model". Journal of Shanghai University (English Edition) 13, n.º 4 (30 de julio de 2009): 327–32. http://dx.doi.org/10.1007/s11741-009-0415-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Smith, A. T. "Velocity coding: Evidence from perceived velocity shifts". Vision Research 25, n.º 12 (enero de 1985): 1969–76. http://dx.doi.org/10.1016/0042-6989(85)90021-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Barron, J. L., R. E. Mercer, X. Chen y P. Joe. "3D velocity from 3D Doppler radial velocity". International Journal of Imaging Systems and Technology 15, n.º 3 (2005): 189–98. http://dx.doi.org/10.1002/ima.20048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Busse, Bret, Gregg Taylor, Kiran Tamvada y Kais Al-Rawi. "Terminal Velocity". Civil Engineering Magazine 91, n.º 1 (enero de 2021): 56–61. http://dx.doi.org/10.1061/ciegag.0001555.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

IOKA, Seiichiro. "Groundwater Velocity". Journal of Japanese Association of Hydrological Sciences 51, n.º 3 (25 de diciembre de 2021): 65–66. http://dx.doi.org/10.4145/jahs.51.65.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Baker, D. N., T. A. Fritz y P. A. Bernhardt. "Plasmoid Velocity". Science 243, n.º 4892 (10 de febrero de 1989): 713. http://dx.doi.org/10.1126/science.243.4892.713.d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Divall, Colin. "Civilising Velocity". Journal of Transport History 32, n.º 2 (diciembre de 2011): 164–91. http://dx.doi.org/10.7227/tjth.32.2.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Rogerson, S. "Escape velocity". Power Engineer 18, n.º 6 (2004): 16. http://dx.doi.org/10.1049/pe:20040603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Baker, D. N., T. A. Fritz y P. A. Bernhardt. "Plasmoid Velocity". Science 243, n.º 4892 (10 de febrero de 1989): 713. http://dx.doi.org/10.1126/science.243.4892.713-c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Herbert, Steven y Terrence Toepker. "Terminal velocity". Physics Teacher 37, n.º 2 (febrero de 1999): 96–97. http://dx.doi.org/10.1119/1.880189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Maerfeld, Charles, Michel Josserand y Claude Gragnolati. "Velocity hydrophone". Journal of the Acoustical Society of America 79, n.º 4 (abril de 1986): 1204. http://dx.doi.org/10.1121/1.393717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Bjørne, Elias, Edmund F. Brekke, Torleiv H. Bryne, Jeff Delaune y Tor Arne Johansen. "Globally stable velocity estimation using normalized velocity measurement". International Journal of Robotics Research 39, n.º 1 (25 de noviembre de 2019): 143–57. http://dx.doi.org/10.1177/0278364919887436.

Texto completo
Resumen
The problem of estimating velocity from a monocular camera and calibrated inertial measurement unit (IMU) measurements is revisited. For the presented setup, it is assumed that normalized velocity measurements are available from the camera. By applying results from nonlinear observer theory, we present velocity estimators with proven global stability under defined conditions, and without the need to observe features from several camera frames. Several nonlinear methods are compared with each other, also against an extended Kalman filter (EKF), where the robustness of the nonlinear methods compared with the EKF are demonstrated in simulations and experiments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Chanson, Hubert. "Velocity measurements within high velocity air-water jets". Journal of Hydraulic Research 31, n.º 3 (mayo de 1993): 365–82. http://dx.doi.org/10.1080/00221689309498832.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Orphal, D. L. y C. E. Anderson. "The dependence of penetration velocity on impact velocity". International Journal of Impact Engineering 33, n.º 1-12 (diciembre de 2006): 546–54. http://dx.doi.org/10.1016/j.ijimpeng.2006.09.054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ihara, Tomonori, Hiroshige Kikura y Yasushi Takeda. "Ultrasonic velocity profiler for very low velocity field". Flow Measurement and Instrumentation 34 (diciembre de 2013): 127–33. http://dx.doi.org/10.1016/j.flowmeasinst.2013.10.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Blanford, Thomas E., Daniel C. Brown y Richard J. Meyer. "Velocity estimation using a compact correlation velocity log". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de marzo de 2023): A304. http://dx.doi.org/10.1121/10.0018939.

Texto completo
Resumen
Unmanned underwater vehicles require bottom-referenced acoustic navigation aids to maintain long-term positional accuracy without surfacing. When these platforms are small, they create new design constraints for acoustic navigation aids because of the limited available space and power. Traditional acoustic navigation techniques, such as Doppler Velocity Logs, are unsuitable for use on small platforms because of the power required to maintain adequate signal to noise ratio when they are scaled in size. A compact correlation velocity log (CVL) is an alternative approach that can meet the power, space, and accuracy requirements for an acoustic navigation aid on such platforms. This device uses a single projector, a sparse receive array, and estimates platform motion using a multi-dimensional fitting algorithm over an ensemble of 3 or more pings. This presentation will discuss the theory of operation, simulation, and experimental results for a 300 kHz compact CVL that is 4 × 8 cm2. [The authors want to acknowledge Lockheed Martin Rotary and Mission Systems for their financial support of this work.]
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Guglielmi, Anatol, Boris Klain y Alexander Potapov. "On the group velocity of whistling atmospherics". Solar-Terrestrial Physics 7, n.º 4 (20 de diciembre de 2021): 67–70. http://dx.doi.org/10.12737/stp-74202106.

Texto completo
Resumen
The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Guo, Yong Ming. "Computer Modeling of Extrusion by the Rigid-Plastic Hybrid Element Method". Materials Science Forum 505-507 (enero de 2006): 703–8. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.703.

Texto completo
Resumen
In this paper, a rigid-plastic hybrid element method is formulated, which is a mixed approach of the rigid-plastic domain-BEM and the rigid-plastic FEM based on the theory of slightly compressible plasticity. Since compatibilities of velocity and velocity's derivative between adjoining boundary elements and finite elements can be met, the velocity and the derivative of velocity can be calculated with the same precision for this hybrid element method. While, the compatibility of the velocity's derivative cannot be met for the rigid-plastic FEMs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

LI, Zhong. "Effect of velocity on ductility under high velocity forming". Chinese Journal of Mechanical Engineering (English Edition) 20, n.º 02 (2007): 32. http://dx.doi.org/10.3901/cjme.2007.02.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Browne, Rodrigo Alberto Vieira, Marcelo Magalhães Sales, Rafael da Costa Sotero, Ricardo Yukio Asano, José Fernando Vila Nova de Moraes, Jônatas de França Barros, Carmen Sílvia Grubert Campbell y Herbert Gustavo Simões. "Critical velocity estimates lactate minimum velocity in youth runners". Motriz: Revista de Educação Física 21, n.º 1 (marzo de 2015): 1–7. http://dx.doi.org/10.1590/s1980-65742015000100001.

Texto completo
Resumen
In order to investigate the validity of critical velocity (CV) as a noninvasive method to estimate the lactate minimum velocity (LMV), 25 youth runners underwent the following tests: 1) 3,000m running; 2) 1,600m running; 3) LMV test. The intensity of lactate minimum was defined as the velocity corresponding to the lowest blood lactate concentration during the LMV test. The CV was determined using the linear model, defined by the inclination of the regression line between distance and duration in the running tests of 1,600 and 3,000m. There was no significant difference (p=0.3055) between LMV and CV. In addition, both protocols presented a good agreement based on the small difference between means and the narrow levels of agreement, as well as a standard error of estimation classified as ideal. In conclusion, CV, as identified in this study, may be an alternative for noninvasive identification of LMV.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Esquivel, Alejandro y A. Lazarian. "Velocity Centroids as Tracers of the Turbulent Velocity Statistics". Astrophysical Journal 631, n.º 1 (20 de septiembre de 2005): 320–50. http://dx.doi.org/10.1086/432458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zaroubi, S., E. Branchini, Y. Hoffman y L. N. Da Costa. "Consistent values from density-density and velocity-velocity comparisons". Monthly Notices of the Royal Astronomical Society 336, n.º 4 (11 de noviembre de 2002): 1234–46. http://dx.doi.org/10.1046/j.1365-8711.2002.05861.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Avellaneda, M., R. Ryan y E. Weinan. "PDFs for velocity and velocity gradients in Burgers’ turbulence". Physics of Fluids 7, n.º 12 (diciembre de 1995): 3067–71. http://dx.doi.org/10.1063/1.868683.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Franca, M. J. y U. Lemmin. "Eliminating velocity aliasing in acoustic Doppler velocity profiler data". Measurement Science and Technology 17, n.º 2 (4 de enero de 2006): 313–22. http://dx.doi.org/10.1088/0957-0233/17/2/012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Khatib, Rémi y Marialore Sulpizi. "Sum Frequency Generation Spectra from Velocity–Velocity Correlation Functions". Journal of Physical Chemistry Letters 8, n.º 6 (8 de marzo de 2017): 1310–14. http://dx.doi.org/10.1021/acs.jpclett.7b00207.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

JUNGE, KENNETH. "Velocity concatenation and velocity as rate of position dissimilation". Scandinavian Journal of Psychology 28, n.º 2 (junio de 1987): 144–49. http://dx.doi.org/10.1111/j.1467-9450.1987.tb00748.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Strumpf, C., M. L. Braunstein, C. W. Sauer y G. J. Andersen. "Velocity difference and velocity ratio in structure-from-motion". Journal of Vision 1, n.º 3 (15 de marzo de 2010): 330. http://dx.doi.org/10.1167/1.3.330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Hao, Ye Li, Wei Wang, Min Fu y Rong Huang. "Optimal velocity model with dual boundary optimal velocity function". Transportmetrica B: Transport Dynamics 5, n.º 2 (21 de marzo de 2016): 211–27. http://dx.doi.org/10.1080/21680566.2016.1159149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

MALMSTRÖM, TOR G., ALLAN T. KIRKPATRICK, BRIAN CHRISTENSEN y KEVIN D. KNAPPMILLER. "Centreline velocity decay measurements in low-velocity axisymmetric jets". Journal of Fluid Mechanics 346 (10 de septiembre de 1997): 363–77. http://dx.doi.org/10.1017/s0022112097006368.

Texto completo
Resumen
The streamwise velocity profiles of low-velocity isothermal axisymmetric jets from nozzles of different diameters were measured and compared with previous experimental data. The objective of the measurements was to examine the dependence of the diffusion of the jet on the outlet conditions. As the outlet velocity was decreased, the centreline velocity decay coefficient began to decrease at an outlet velocity of about 6 m s−1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Rahmani, Abderrehmane, Fabrice Viale, Georges Dalleau y Jean-René Lacour. "Force/velocity and power/velocity relationships in squat exercise". European Journal of Applied Physiology 84, n.º 3 (12 de marzo de 2001): 227–32. http://dx.doi.org/10.1007/pl00007956.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Dong, Li-yun y Qing-xun Meng. "Effect of relative velocity on the optimal velocity model". Journal of Shanghai University (English Edition) 9, n.º 4 (agosto de 2005): 283–85. http://dx.doi.org/10.1007/s11741-005-0037-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sreenath, B. N., Kenath Arun y C. Sivaram. "Is there lower limit to velocity or velocity change?" Astrophysics and Space Science 345, n.º 1 (17 de enero de 2013): 209–11. http://dx.doi.org/10.1007/s10509-013-1364-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Tian, Lin, Gerald M. Heymsfield, Anthony C. Didlake, Stephen Guimond y Lihua Li. "Velocity–Azimuth Display Analysis of Doppler Velocity for HIWRAP". Journal of Applied Meteorology and Climatology 54, n.º 8 (agosto de 2015): 1792–808. http://dx.doi.org/10.1175/jamc-d-14-0054.1.

Texto completo
Resumen
AbstractThe velocity–azimuth display (VAD) analysis technique established for ground-based scanning radar is applied to the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). The VAD technique provides a mean vertical profile of the horizontal winds for each complete conical scan of the HIWRAP radar. One advantage of this technique is that it has shown great value for data assimilation and for operational forecasts. Another advantage is that it is computationally inexpensive, which makes it suitable for real-time retrievals. The VAD analysis has been applied to the HIWRAP data collected during NASA’s Genesis and Rapid Intensification Processes (GRIP) mission. The traditional dual-Doppler analysis for deriving wind fields in the nadir plane is also presented and is compared with the VAD analysis. The results show that the along-track winds from the VAD technique and dual-Doppler analysis agree in general. The VAD horizontal winds capture the mean vortex structure of two tropical cyclones, and they are in general agreement with winds from nearby dropsondes. Several assumptions are made for the VAD technique. These assumptions include a stationary platform for each HIWRAP scan and constant vertical velocity of the hydrometeors along each complete scan. As a result, the VAD technique can produce appreciable errors in regions of deep convection such as the eyewall, whereas in stratiform regions the retrieval errors are minimal. Despite these errors, the VAD technique can still adequately capture the larger-scale structure of the hurricane vortex given a sufficient number of flight passes over the storm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Lazarian, A. y A. Esquivel. "Statistics of Velocity from Spectral Data: Modified Velocity Centroids". Astrophysical Journal 592, n.º 1 (26 de junio de 2003): L37—L40. http://dx.doi.org/10.1086/377427.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía