Literatura académica sobre el tema "Velocity"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Velocity".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Velocity"
García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas y G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, n.º 5 (mayo de 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.
Texto completoLee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng y In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, n.º 1 (30 de enero de 2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.
Texto completoCojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, n.º 9 (5 de septiembre de 2019): 275–82. http://dx.doi.org/10.21275/art2020906.
Texto completoByun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, n.º 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.
Texto completoTurner, Marie. "Velocity". Fourth Genre 25, n.º 2 (1 de agosto de 2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.
Texto completoWang, Hongsong, Liang Wang, Jiashi Feng y Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (abril de 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.
Texto completoRowell, A. L., C. S. Williams y D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine & Science in Sports & Exercise 28, Supplement (mayo de 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.
Texto completoLazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, n.º 8 (agosto de 2003): 14. http://dx.doi.org/10.1063/1.1611340.
Texto completoSAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, n.º 01 (enero de 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.
Texto completoHaitjema, Henk M. y Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, n.º 1 (30 de noviembre de 2015): 1. http://dx.doi.org/10.1111/gwat.12386.
Texto completoTesis sobre el tema "Velocity"
Makin, Alexis David James. "Velocity memory". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html.
Texto completoSeligman, Joshua R. "Power development through low velocity isotonic, or combined low velocity isotonic-high velocity isokinetic training /". Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7046.
Texto completoZhu, Weijia. "A new instrumentation for particle velocity and velocity related measurements under water /". View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239913.
Texto completoBeg, Sarena. "The determinants of velocity". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20781.pdf.
Texto completoSaeed, Khizer. "Laminar burning velocity measurements". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.
Texto completoKopp, Robert William. "Determination of the velocity". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25837.
Texto completoTeng, Xiaoqing. "High velocity impact fracture". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32118.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 315-330).
An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations.
(cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement.
(cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis.
by Xiaoqing Teng.
Ph.D.
Johansson, Torneus Daniel y Alexander Kotoglou. "Velocity of plasma flow". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199363.
Texto completoStober, Gunter y Christoph Jacobi. "Meteor head velocity determination". Universität Leipzig, 2007. https://ul.qucosa.de/id/qucosa%3A15571.
Texto completoMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
Stober, Gunter y Christoph Jacobi. "Meteor head velocity determination". Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223206.
Texto completoMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments
Libros sobre el tema "Velocity"
Koontz, Dean R. Velocity. New York: Bantam Books, 2005.
Buscar texto completoKrygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.
Buscar texto completoMcCloy, Kristin. Velocity. New York: Random House, 1988.
Buscar texto completoKrygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.
Buscar texto completoKoontz, Dean R. Velocity. London: Harper, 2011.
Buscar texto completoEnvironmental Technology Laboratory (Environmental Research Laboratories), ed. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Buscar texto completoHill, Reginald J. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Buscar texto completoEnvironmental Technology Laboratory (Environmental Research Laboratories), ed. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Buscar texto completoBoyd, Blanche M. Terminal velocity. New York: Alfred A. Knopf, 1997.
Buscar texto completoYeh, Cindy. Urban Velocity. New York, NY: the artist, 2015.
Buscar texto completoCapítulos de libros sobre el tema "Velocity"
Roberson, Robert E. y Richard Schwertassek. "Velocity". En Dynamics of Multibody Systems, 79–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-86464-3_4.
Texto completoGooch, Jan W. "Velocity". En Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12467.
Texto completoWeik, Martin H. "velocity". En Computer Science and Communications Dictionary, 1885. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20712.
Texto completoDalton, Jeff. "Velocity". En Great Big Agile, 271–72. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4206-3_71.
Texto completoWatkins, William H. "Velocity". En Loudspeaker Physics and Forced Vibration, 67–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91634-3_11.
Texto completoKuttner, Thomas y Armin Rohnen. "Velocity Transducer (Vibration Velocity Transducer)". En Practice of Vibration Measurement, 101–9. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38463-0_7.
Texto completoElise Albert, C. y Laura Danly. "Interemdiate-velocity Clouds". En High-Velocity Clouds, 73–100. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_4.
Texto completoWakker, Bart P., Klaas S. de Boer y Hugo van Woerden. "History of HVC research — an Overview". En High-Velocity Clouds, 1–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_1.
Texto completoVan Woerden, Hugo y Bart P. Wakker. "Distances and Metallicities of HVCS". En High-Velocity Clouds, 195–226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_10.
Texto completoDe Boer, Klaas S. "The Hot Halo". En High-Velocity Clouds, 227–50. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_11.
Texto completoActas de conferencias sobre el tema "Velocity"
Butler, John L., Stephen C. Butler, Donald P. Massa y George H. Cavanagh. "Metallic glass velocity sensor". En Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50333.
Texto completoFomel, Sergey. "Migration velocity analysis by velocity continuation". En SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816277.
Texto completoGentilman, Richard L., Leslie J. Bowen, Daniel F. Fiore, Hong T. Pham y William J. Serwatka. "Injection molded 1–3 piezocomposite velocity sensors". En Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50346.
Texto completo-G. Ferber, R. "Velocity independent time migration and velocity analysis". En 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410614.
Texto completoNemeth, Tamas. "Velocity estimation using tomographic migration velocity analysis". En SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887304.
Texto completoFerreira, Rogelma M. S. y Fernando A. Oliveira. "Velocity-velocity correlation function for anomalous diffusion". En NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569535.
Texto completoKo, Sung H. "Performance of velocity sensor for flexural wave reduction". En Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50352.
Texto completoBulik, Tomasz y Donald Q. Lamb. "Gamma-ray bursts from high velocity neutron stars". En High velocity neutron stars and gamma−ray bursts. AIP, 1996. http://dx.doi.org/10.1063/1.50276.
Texto completoSherwood, John W. C. "Velocity estimation". En SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892367.
Texto completoSky, Hellen, John McCormick y Garth Paine. "Escape velocity". En ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.281496.
Texto completoInformes sobre el tema "Velocity"
Kramer, Mitchell. divine’s Velocity Marketing. Boston, MA: Patricia Seybold Group, febrero de 2003. http://dx.doi.org/10.1571/pr2-21-03cc.
Texto completoPeterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), junio de 1997. http://dx.doi.org/10.2172/631265.
Texto completoLiu, Zhenyue y Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada272537.
Texto completoLiu, Zhenyue y Norman Bleistein. Velocity Analysis by Inversion. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada241003.
Texto completoToor, A., T. Donich y P. Carter. High velocity impact experiment (HVIE). Office of Scientific and Technical Information (OSTI), febrero de 1998. http://dx.doi.org/10.2172/303456.
Texto completoMeidinger, Brian. BENCAP, LLC: CAPSULE VELOCITY TEST. Office of Scientific and Technical Information (OSTI), septiembre de 2005. http://dx.doi.org/10.2172/925758.
Texto completoSymes, William W. Velocity Inversion by Coherency Optimization. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1988. http://dx.doi.org/10.21236/ada455248.
Texto completoWeyburne, David. Similarity of the Velocity Profile. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2014. http://dx.doi.org/10.21236/ada609962.
Texto completoJohns, William E. Acoustic Velocity Profiling in SYNOP. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1996. http://dx.doi.org/10.21236/ada306621.
Texto completoLundberg, Patrik. Transition Velocity Experiments on Ceramics. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2003. http://dx.doi.org/10.21236/ada420132.
Texto completo