Artículos de revistas sobre el tema "Usher syndrome type 3"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Usher syndrome type 3.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Usher syndrome type 3".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Castiglione, Alessandro y Claes Möller. "Usher Syndrome". Audiology Research 12, n.º 1 (11 de enero de 2022): 42–65. http://dx.doi.org/10.3390/audiolres12010005.

Texto completo
Resumen
Usher syndrome (USH) is the most common genetic condition responsible for combined loss of hearing and vision. Balance disorders and bilateral vestibular areflexia are also observed in some cases. The syndrome was first described by Albrecht von Graefe in 1858, but later named by Charles Usher, who presented a large number of cases with hearing loss and retinopathy in 1914. USH has been grouped into three main clinical types: 1, 2, and 3, which are caused by mutations in different genes and are further divided into different subtypes. To date, nine causative genes have been identified and confirmed as responsible for the syndrome when mutated: MYO7A, USH1C, CDH23, PCDH15, and USH1G (SANS) for Usher type 1; USH2A, ADGRV1, and WHRN for Usher type 2; CLRN1 for Usher type 3. USH is inherited in an autosomal recessive pattern. Digenic, bi-allelic, and polygenic forms have also been reported, in addition to dominant or nonsyndromic forms of genetic mutations. This narrative review reports the causative forms, diagnosis, prognosis, epidemiology, rehabilitation, research, and new treatments of USH.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sahu, Sabin y Sanjay Kumar Singh. "Usher syndrome Type I in an adult Nepalese male: a rare case report". Nepalese Journal of Ophthalmology 9, n.º 2 (21 de febrero de 2018): 203–5. http://dx.doi.org/10.3126/nepjoph.v9i2.19271.

Texto completo
Resumen
Usher syndrome, also known as retinitis pigmentosa-dysacusis syndrome, is an extremely rare genetic disorder, characterized by retinitis pigmentosa (RP) and congenital sensorineural hearing loss. It has been estimated to account for 3-6% of the congenitally deaf population, upto 8-33% of individuals with RP and half of all cases with combined deafness and blindness (Vernon M,1969; Boughman JA et al,1983). The prevalence of Usher syndrome have been reported to range from 3.5 to 6.2 per 100,000 in different populations (Vernon M,1969; Boughman JA et al,1983; Yan D et al, 2010).We report a case of Usher syndrome type I in an adult Nepalese male with typical congenital profound hearing loss, and night blindness secondary to retinitis pigmentosa.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Yoshimura, Hidekane, Chie Oshikawa, Jun Nakayama, Hideaki Moteki y Shin-ichi Usami. "Identification of a Novel CLRN1 Gene Mutation in Usher Syndrome Type 3". Annals of Otology, Rhinology & Laryngology 124, n.º 1_suppl (5 de marzo de 2015): 94S—99S. http://dx.doi.org/10.1177/0003489415574069.

Texto completo
Resumen
Objective: This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Methods: Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. Results: We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. Conclusion: This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wagenaar, Mariette, Paul Draaijer, Hans Meek, H. J. ten Donkelaar, Pieter Wesseling, William Kimberling y Cor Cremers. "The cochlear nuclei in two patients with Usher syndrome type I". International Journal of Pediatric Otorhinolaryngology 50, n.º 3 (noviembre de 1999): 185–95. http://dx.doi.org/10.1016/s0165-5876(99)00246-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Pietola, Laura, Antti A. Aarnisalo, Akram Abdel-Rahman, Hanna Västinsalo, Juha Isosomppi, Heikki Löppönen, Erna Kentala et al. "Speech Recognition and Communication Outcomes With Cochlear Implantation in Usher Syndrome Type 3". Otology & Neurotology 33, n.º 1 (enero de 2012): 38–41. http://dx.doi.org/10.1097/mao.0b013e31823dbc56.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Joensuu, Tarja, Riikka Hämäläinen, Bo Yuan, Cheryl Johnson, Saara Tegelberg, Paolo Gasparini, Leopoldo Zelante et al. "Mutations in a Novel Gene with Transmembrane Domains Underlie Usher Syndrome Type 3". American Journal of Human Genetics 69, n.º 4 (octubre de 2001): 673–84. http://dx.doi.org/10.1086/323610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Smith, Richard J. H., Elizabeth C. Lee, William J. Kimberling, Stephen P. Daiger, Mary Z. Pelias, Bronya J. B. Keats, Marcelle Jay et al. "Localization of two genes for usher syndrome type I to chromosome 11". Genomics 14, n.º 4 (diciembre de 1992): 995–1002. http://dx.doi.org/10.1016/s0888-7543(05)80122-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Cuzzuol, Beatriz Rocha, Jonathan Santos Apolonio, Ronaldo Teixeira da Silva Júnior, Lorena Sousa de Carvalho, Luana Kauany de Sá Santos, Luciano Hasimoto Malheiro, Marcel Silva Luz et al. "Usher syndrome: Genetic diagnosis and current therapeutic approaches". World Journal of Otorhinolaryngology 11, n.º 1 (19 de enero de 2024): 1–17. http://dx.doi.org/10.5319/wjo.v11.i1.1.

Texto completo
Resumen
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A , USH1C , CDH23 , PCDH15 , USH1G , USH2A , ADGRV1 , WHRN and CLRN1 . These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ahmed, Zubair M., Saima Riazuddin, Sandar Aye, Rana A. Ali, Hanka Venselaar, Saima Anwar, Polina P. Belyantseva, Muhammad Qasim, Sheikh Riazuddin y Thomas B. Friedman. "Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome". Human Genetics 124, n.º 3 (22 de agosto de 2008): 215–23. http://dx.doi.org/10.1007/s00439-008-0543-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Li, Taoxi, Yong Feng, Yalan Liu, Chufeng He, Jing Liu, Hongsheng Chen, Yuyuan Deng et al. "A novel ABHD12 nonsense variant in Usher syndrome type 3 family with genotype-phenotype spectrum review". Gene 704 (julio de 2019): 113–20. http://dx.doi.org/10.1016/j.gene.2019.04.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Hmani, Mounira, Abdelmonem Ghorbel, Amel Boulila-Elgaied, Zeineb Ben Zina, Wafa Kammoun, Mohamed Drira, Mohamed Chaabouni, Christine Petit y Hammadi Ayadi. "A novel locus for Usher syndrome type II, USH2B, maps to chromosome 3 at p23–24.2". European Journal of Human Genetics 7, n.º 3 (abril de 1999): 363–67. http://dx.doi.org/10.1038/sj.ejhg.5200307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

KAHRIZI, KIMIA, NILOOFAR BAZAZZADEGAN, LEILA JAMALI, NOOSHIN NIKZAT, ATIE KASHEF y HOSSEIN NAJMABADI. "A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II". Journal of Genetics 93, n.º 3 (diciembre de 2014): 837–41. http://dx.doi.org/10.1007/s12041-014-0443-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Wahlqvist, Moa, Claes Möller, Kerstin Möller y Berth Danermark. "Implications of Deafblindness: The Physical and Mental Health and Social Trust of Persons with Usher Syndrome Type 3". Journal of Visual Impairment & Blindness 110, n.º 4 (julio de 2016): 245–56. http://dx.doi.org/10.1177/0145482x1611000404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Davies, Camron, Jenna Bergman, Carly Misztal, Renuka Ramchandran, Jeenu Mittal, Erdogan Bulut, Viraj Shah, Rahul Mittal y Adrien A. Eshraghi. "The Outcomes of Cochlear Implantation in Usher Syndrome: A Systematic Review". Journal of Clinical Medicine 10, n.º 13 (29 de junio de 2021): 2915. http://dx.doi.org/10.3390/jcm10132915.

Texto completo
Resumen
Objective: To systematically appraise the implementation of cochlear implantation (CI) in Usher Syndrome (USH) Types 1, 2, and 3 patients, and analyze who would benefit from CI. Data Sources: A comprehensive search of PubMed, Embase, CINAHL, and Cochrane Library electronic databases from inception through June 2020 was performed. There were no language restrictions. Study Selection: The PRISMA strategy was followed. Included studies discuss USH patients who underwent CI regardless of age, nationality, or clinical subtype. All included studies report post-implantation functional, cognitive, or quality of life outcomes. Only reviews were excluded. Results: Fifteen studies met the inclusion criteria. USH patients experienced improvements in PTA and speech perception and expression outcomes after CI, as well as improvements in phonological memory and quality of life measures. Overall, patients implanted at younger ages outperformed older patients in audiological testing. Similarly, patients with prolonged auditory deprivation had relatively poor performance outcomes in sentence recognition and speech detection following CI. Conclusions: Most USH patients benefit from CI. USH patients who undergo CI at younger ages generally achieve better hearing, speech, and cognitive outcomes. CI at older ages can still prove beneficial if appropriate auditory amplification is started at the right time. Further research is warranted to fill the gap in understanding regarding the gene mutations underlying the pathophysiology of USH that have favorable CI outcomes as well as the optimal time to perform CI.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kowalewski, Björn, Heike Lange, Sabrina Galle, Thomas Dierks, Torben Lübke y Markus Damme. "Decoding the consecutive lysosomal degradation of 3-O-sulfate containing heparan sulfate by Arylsulfatase G (ARSG)". Biochemical Journal 478, n.º 17 (7 de septiembre de 2021): 3221–37. http://dx.doi.org/10.1042/bcj20210415.

Texto completo
Resumen
The lysosomal degradation of heparan sulfate is mediated by the concerted action of nine different enzymes. Within this degradation pathway, Arylsulfatase G (ARSG) is critical for removing 3-O-sulfate from glucosamine, and mutations in ARSG are causative for Usher syndrome type IV. We developed a specific ARSG enzyme assay using sulfated monosaccharide substrates, which reflect derivatives of its natural substrates. These sulfated compounds were incubated with ARSG, and resulting products were analyzed by reversed-phase HPLC after chemical addition of the fluorescent dyes 2-aminoacridone or 2-aminobenzoic acid, respectively. We applied the assay to further characterize ARSG regarding its hydrolytic specificity against 3-O-sulfated monosaccharides containing additional sulfate-groups and N-acetylation. The application of recombinant ARSG and cells overexpressing ARSG as well as isolated lysosomes from wild-type and Arsg knockout mice validated the utility of our assay. We further exploited the assay to determine the sequential action of the different sulfatases involved in the lysosomal catabolism of 3-O-sulfated glucosamine residues of heparan sulfate. Our results confirm and extend the characterization of the substrate specificity of ARSG and help to determine the sequential order of the lysosomal catabolic breakdown of (3-O-)sulfated heparan sulfate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Joensuu, Tarja, Gonzalo Blanco, Leenamaija Pakarinen, Pertti Sistonen, Helena Kääriäinen, Steve Brown, Albert de la Chapelle y Eeva-Marja Sankila. "Refined Mapping of the Usher Syndrome Type III Locus on Chromosome 3, Exclusion of Candidate Genes, and Identification of the Putative Mouse Homologous Region". Genomics 38, n.º 3 (diciembre de 1996): 255–63. http://dx.doi.org/10.1006/geno.1996.0626.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Eisenberger, Tobias, Rima Slim, Ahmad Mansour, Markus Nauck, Gudrun Nürnberg, Peter Nürnberg, Christian Decker et al. "Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3". Orphanet Journal of Rare Diseases 7, n.º 1 (2012): 59. http://dx.doi.org/10.1186/1750-1172-7-59.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Busi, Micol y Alessandro Castiglione. "Navigating the Usher Syndrome Genetic Landscape: An Evaluation of the Associations between Specific Genes and Quality Categories of Cochlear Implant Outcomes". Audiology Research 14, n.º 2 (26 de febrero de 2024): 254–63. http://dx.doi.org/10.3390/audiolres14020023.

Texto completo
Resumen
Usher syndrome (US) is a clinically and genetically heterogeneous disorder that involves three main features: sensorineural hearing loss, retinitis pigmentosa (RP), and vestibular impairment. With a prevalence of 4–17/100,000, it is the most common cause of deaf-blindness worldwide. Genetic research has provided crucial insights into the complexity of US. Among nine confirmed causative genes, MYO7A and USH2A are major players in US types 1 and 2, respectively, whereas CRLN1 is the sole confirmed gene associated with type 3. Variants in these genes also contribute to isolated forms of hearing loss and RP, indicating intersecting molecular pathways. While hearing loss can be adequately managed with hearing aids or cochlear implants (CIs), approved RP treatment modalities are lacking. Gene replacement and editing, antisense oligonucleotides, and small-molecule drugs hold promise for halting RP progression and restoring vision, enhancing patients’ quality of life. Massively parallel sequencing has identified gene variants (e.g., in PCDH15) that influence CI results. Accordingly, preoperative genetic examination appears valuable for predicting CI success. To explore genetic mutations in CI recipients and establish correlations between implant outcomes and involved genes, we comprehensively reviewed the literature to gather data covering a broad spectrum of CI outcomes across all known US-causative genes. Implant outcomes were categorized as excellent or very good, good, poor or fair, and very poor. Our review of 95 cochlear-implant patients with US, along with their CI outcomes, revealed the importance of presurgical genetic testing to elucidate potential challenges and provide tailored counseling to improve auditory outcomes. The multifaceted nature of US demands a comprehensive understanding and innovative interventions. Genetic insights drive therapeutic advancements, offering potential remedies for the retinal component of US. The synergy between genetics and therapeutics holds promise for individuals with US and may enhance their sensory experiences through customized interventions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Vojvodic, Sladjana, Gabor Katona y Miroslav Sarac. "Combinatorial pharmacogenomic test for successful antidepressant treatment of a major depressive disorder". Medical review 74, n.º 3-4 (2021): 117–22. http://dx.doi.org/10.2298/mpns2104117v.

Texto completo
Resumen
Introduction. The combinatorial pharmacogenomic test has shown the potential to predict antidepressant response, tolerability, selection, and dosage in the treatment of a major depressive disorder. A case of successful management of antidepressant therapy adjustment is reported by using the combinatorial pharmacogenomic test. Case Report. A 53-year old man, severely disabled due to a rare genetic disease, Usher syndrome type 3, was treated with numerous antidepressants. However, episodes of major depression recurred, along with frequent suicidal thoughts. A combinatorial pharmacogenomic test was considered to design a potentially effective antidepressant therapy. Conclusion. According to the results of the combinatorial pharmacogenomic test, the patient constantly received inadequate antidepressant therapy, which did not lead to an improvement of depression due to moderate gene-drug interaction. The patient was prescribed nortriptyline, which proved to be one of the few most adequate according to the test. He showed improvement with subjectively more tolerable depression without suicidal thoughts and episodes of major depression. This case showed that the combinatorial pharmacogenomic testing may contribute to better selection of antidepressant therapy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Ogun, Oluwatobi y Marisa Zallocchi. "Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly". Journal of Cell Biology 207, n.º 3 (3 de noviembre de 2014): 375–91. http://dx.doi.org/10.1083/jcb.201404016.

Texto completo
Resumen
Clarin-1 is a four-transmembrane protein expressed by hair cells and photoreceptors. Mutations in its corresponding gene are associated with Usher syndrome type 3, characterized by late-onset and progressive hearing and vision loss in humans. Mice carrying mutations in the clarin-1 gene have hair bundle dysmorphology and a delay in synapse maturation. In this paper, we examined the expression and function of clarin-1 in zebrafish hair cells. We observed protein expression as early as 1 d postfertilization. Knockdown of clarin-1 resulted in inhibition of FM1-43 incorporation, shortening of the kinocilia, and mislocalization of ribeye b clusters. These phenotypes were fully prevented by co-injection with clarin-1 transcript, requiring its C-terminal tail. We also observed an in vivo interaction between clarin-1 and Pcdh15a. Altogether, our results suggest that clarin-1 is functionally important for mechanotransduction channel activity and for proper localization of synaptic components, establishing a critical role for clarin-1 at the apical and basal poles of hair cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Pennings, Ronald J. E., August F. Deutman, Randall R. Fields, William J. Kimberling, Patrick L. M. Huygen y W. R. J. Cremers. "Usher Syndrome Type III Can Mimic other Types of Usher Syndrome". Annals of Otology, Rhinology & Laryngology 112, n.º 6 (junio de 2003): 525–30. http://dx.doi.org/10.1177/000348940311200608.

Texto completo
Resumen
Clinical and genetic characteristics are presented of 2 patients from a Dutch Usher syndrome type III family who have a new homozygous USH3 gene mutation: 149–152delCAGG + insTGTCCAAT. One individual (IV: 1) is profoundly hearing impaired and has normal vestibular function and retinitis punctata albescens (RPA). The other individual is also profoundly hearing impaired, but has well-developed speech, vestibular areflexia, and retinitis pigmentosa sine pigmento (RPSP). These findings suggest that Usher syndrome type III can be clinically misdiagnosed as either Usher type I or II; that Usher syndrome patients who are profoundly hearing impaired and have normal vestibular function should be tested for USH3 mutations; and that RPA and RPSP can occur as fundoscopic manifestations of pigmentary retinopathy in Usher syndrome.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Reisser, Christoph F. V., William J. Kimberling y Christian R. Otterstedde. "Hearing Loss in Usher Syndrome Type II is Nonprogressive". Annals of Otology, Rhinology & Laryngology 111, n.º 12 (diciembre de 2002): 1108–11. http://dx.doi.org/10.1177/000348940211101208.

Texto completo
Resumen
Usher syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss and progressive visual loss secondary to retinitis pigmentosa. In the literature, a possible progression of the moderate to severe hearing loss in Usher syndrome type II (Usher II) is controversial. We studied the development of the hearing loss of 125 patients with a clinical diagnosis of Usher syndrome type II intraindividually and interindividually by repeatedly performing complete audiological and neuro-otologic examinations. Our data show a very characteristic slope of the hearing curve in all Usher II patients and no clinically relevant progression of the hearing loss over up to 17 years. The subjective impression of a deterioration of the communicative abilities of Usher II patients must therefore be attributed to the progressive visual loss. The patients should be reassured that changes in their hearing abilities are unlikely and should be provided with optimally fitted modern hearing aids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Boden, William E., Deepak L. Bhatt, Peter P. Toth, Kausik K. Ray, M. John Chapman y Thomas F. Lüscher. "Profound reductions in first and total cardiovascular events with icosapent ethyl in the REDUCE-IT trial: why these results usher in a new era in dyslipidaemia therapeutics". European Heart Journal 41, n.º 24 (23 de diciembre de 2019): 2304–12. http://dx.doi.org/10.1093/eurheartj/ehz778.

Texto completo
Resumen
Abstract The aims of this clinical review are to: (i) highlight the importance of elevated baseline triglycerides (TG) in the setting of well-controlled low-density lipoprotein cholesterol (LDL-C) on statins as a major contributor to residual atherosclerotic cardiovascular disease (ASCVD) risk, particularly among patients with type 2 diabetes mellitus, metabolic syndrome, and obesity whose distinctive lipid phenotype cannot be optimally treated with LDL-C reduction therapy alone; (ii) describe the findings and clinical implications of the landmark REDUCE-IT trial in which ethyl eicosapentaenoic acid significantly improved ASCVD outcomes. While many genetic studies have shown that elevated TG are an independent causal factor for ASCVD, prior placebo-controlled trials using niacin, fibrates, omega-3 fatty acids, and dietary supplement fish oil preparations have failed to demonstrate significant CV event reduction when added to statin therapy. In contrast, the REDUCE-IT trial in 8179 participants showed convincingly that the administration of 4 g daily of icosapent ethyl (an ethyl ester of eicosapentaenoic acid) in patients at high risk for ASCVD with increased levels of baseline TG [median value, 2.44 mmol/L (216.0 mg/dL)] but well-controlled LDL-C [median value, 1.94 mmol/L (75.0 mg/dL)] reduced significantly incident events across both the trial primary endpoint and multiple prespecified secondary endpoints, including cardiovascular death, as well as both subsequent and total primary endpoint and key secondary endpoint events. Icosapent ethyl unequivocally contributed to ASCVD event reduction over and above statin therapy. The REDUCE-IT trial results should alter our approach to managing a growing population of hypertriglyceridaemic patients whose lipid phenotype requires more intensive treatment beyond LDL-C lowering alone.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Sharefah D. A. Al Issa, Dina S Bashammakh y Nasir AM Al Jurayyan. "Diabetes mellitus type 1(DM-1) in a child with usher syndrome". World Journal of Biology Pharmacy and Health Sciences 16, n.º 1 (30 de octubre de 2023): 229–32. http://dx.doi.org/10.30574/wjbphs.2023.16.1.0377.

Texto completo
Resumen
Usher Syndrome is a rare genetic (autosomal recessive) disorder that characterized by partial or total hearing loss caused by defective inner ear and vision loss caused by retinitis pigmentosa which worsens by time. We report on a 9 year-old child who was diagnosed by genetic testing via whole exome sequencing (WES) with Usher Syndrome. At the age of two years and three months, the patient developed type 1 Diabetes Mellitus (DM-1). The aim of this article is to provide a comprehensive review of Usher Syndrome. The postulated association of Usher Syndrome and diabetes mellitus type 1 pathogenesis is also highlighted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Keats, Bronya J. B., Alexander A. Todorov, Larry D. Atwood, Mary Z. Pelias, J. Fielding Hejtmancik, William J. Kimberling, Mark Leppert, Richard A. Lewis y Richard J. H. Smith. "Linkage studies of usher syndrome type 1: Exclusion results from the usher syndrome consortium". Genomics 14, n.º 3 (noviembre de 1992): 707–14. http://dx.doi.org/10.1016/s0888-7543(05)80172-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ouyang, Xiao Mei, Denise Yan, Li Lin Du, J. Fielding Hejtmancik, Samuel G. Jacobson, Walter E. Nance, An Ren Li et al. "Characterization of Usher syndrome type I gene mutations in an Usher syndrome patient population". Human Genetics 116, n.º 4 (20 de enero de 2005): 292–99. http://dx.doi.org/10.1007/s00439-004-1227-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Aarem, Annelies Van, Mariette Wagenaar, Alfred J. L. G. Pinckers, Patrick L. M. Huygen, Elisabeth M. Bleeker-wagemakers, Bill J. Kimberling y W. R. J. Cremers. "Ophthalmologic findings in Usher syndrome type 2A". Ophthalmic Genetics 16, n.º 4 (enero de 1995): 151–58. http://dx.doi.org/10.3109/13816819509057856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ouyang, XM, D. Yam, JF Hejtmancik, SG Jacobson, AR Li, LL Du, S. Angeli, M. Kaiser, T. Balkany y XZ Liu. "Mutational spectrum in Usher syndrome type II". Clinical Genetics 65, n.º 4 (16 de febrero de 2004): 288–93. http://dx.doi.org/10.1046/j.1399-0004.2004.00216.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Pieke Dahl, S., W. J. Kimberling, M. B. Gorin, M. D. Weston, J. M. Furman, A. Pikus y C. Moller. "Genetic heterogeneity of Usher syndrome type II." Journal of Medical Genetics 30, n.º 10 (1 de octubre de 1993): 843–48. http://dx.doi.org/10.1136/jmg.30.10.843.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Yang, Jun. "Current understanding of usher syndrome type II". Frontiers in Bioscience 17, n.º 1 (2012): 1165. http://dx.doi.org/10.2741/3979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

FRIEDMAN, THOMAS B., JULIE M. SCHULTZ y ZUBAIR M. AHMED. "Usher Syndrome Type 1: Genotype–Phenotype Relationships". Retina 25, Supplement (diciembre de 2005): S40—S42. http://dx.doi.org/10.1097/00006982-200512001-00016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Toms, Maria, Waheeda Pagarkar y Mariya Moosajee. "Usher syndrome: clinical features, molecular genetics and advancing therapeutics". Therapeutic Advances in Ophthalmology 12 (enero de 2020): 251584142095219. http://dx.doi.org/10.1177/2515841420952194.

Texto completo
Resumen
Usher syndrome has three subtypes, each being clinically and genetically heterogeneous characterised by sensorineural hearing loss and retinitis pigmentosa (RP), with or without vestibular dysfunction. It is the most common cause of deaf–blindness worldwide with a prevalence of between 4 and 17 in 100 000. To date, 10 causative genes have been identified for Usher syndrome, with MYO7A accounting for >50% of type 1 and USH2A contributing to approximately 80% of type 2 Usher syndrome. Variants in these genes can also cause non-syndromic RP and deafness. Genotype–phenotype correlations have been described for several of the Usher genes. Hearing loss is managed with hearing aids and cochlear implants, which has made a significant improvement in quality of life for patients. While there is currently no available approved treatment for the RP, various therapeutic strategies are in development or in clinical trials for Usher syndrome, including gene replacement, gene editing, antisense oligonucleotides and small molecule drugs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Baghdadi, Moetez, Simona Caldani, Audrey Maudoux, Isabelle Audo, Maria Pia Bucci y Sylvette R. Wiener-Vacher. "Subjective visual vertical in patients with Usher syndrome". Journal of Vestibular Research 30, n.º 4 (17 de octubre de 2020): 275–82. http://dx.doi.org/10.3233/ves-200711.

Texto completo
Resumen
Highlights • The estimation of verticality (assessed with Subjective visual vertical (SVV)) is more variable in patients with Usher (type I and II) compared to healthy participants. • Visual and vestibular information are essential for the visual vertical (VV) perception. • A reweighting of sensory information from the central nervous system seems to be able to compensate for the absence of vestibular function in patients with Usher type I.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Astuto, Lisa M., Michael D. Weston, Carol A. Carney, Denise M. Hoover, Cor W. R. J. Cremers, Mariette Wagenaar, Claes Moller et al. "Genetic Heterogeneity of Usher Syndrome: Analysis of 151 Families with Usher Type I". American Journal of Human Genetics 67, n.º 6 (diciembre de 2000): 1569–74. http://dx.doi.org/10.1086/316889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Zaw, Khine, Livia S. Carvalho, May T. Aung-Htut, Sue Fletcher, Steve D. Wilton, Fred K. Chen y Samuel McLenachan. "Pathogenesis and Treatment of Usher Syndrome Type IIA". Asia-Pacific Journal of Ophthalmology 11, n.º 4 (julio de 2022): 369–79. http://dx.doi.org/10.1097/apo.0000000000000546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Rani, Alka, Nikhil Pal, Raj Vardhan Azad, Yog Raj Sharma, Parijat Chandra y Deependra Vikram Singh. "Tractional retinal detachment in Usher syndrome type II". Clinical and Experimental Ophthalmology 33, n.º 4 (agosto de 2005): 436–37. http://dx.doi.org/10.1111/j.1442-9071.2005.01014.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Plantinga, Rutger F., Ronald J. E. Pennings, Patrick L. M. Huygen, Eeva-Marja Sankila, Kaija Tuppurainen, Leenamaija Kleemola, Cor W. R. J. Cremers y August F. Deutman. "Visual impairment in Finnish Usher syndrome type III". Acta Ophthalmologica Scandinavica 84, n.º 1 (2 de diciembre de 2005): 36–41. http://dx.doi.org/10.1111/j.1600-0420.2005.00507.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Bujakowska, K. M., M. Consugar, E. Place, S. Harper, J. Lena, D. G. Taub, J. White et al. "Targeted Exon Sequencing in Usher Syndrome Type I". Investigative Ophthalmology & Visual Science 55, n.º 12 (2 de diciembre de 2014): 8488–96. http://dx.doi.org/10.1167/iovs.14-15169.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

van Aarem, A., M. Wagenaar, E. Tonnaer, S. Pieke Dahl, J. Bisseling, H. Janssen, B. Bastiaans, W. Kimberling y C. Cremers. "Semen Analysis in the Usher Syndrome Type 2A". ORL 61, n.º 3 (1999): 126–30. http://dx.doi.org/10.1159/000027656.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

CAHILL, MARK T., PETER J. BARRY y PAUL F. KENNA. "GIANT RETINAL TEAR IN USHER SYNDROME TYPE II". Retina 18, n.º 2 (1998): 177. http://dx.doi.org/10.1097/00006982-199818020-00016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kıratlı, Hayyam y Cem Öztürkmen. "Coats-like lesions in Usher syndrome type II". Graefe's Archive for Clinical and Experimental Ophthalmology 242, n.º 3 (3 de diciembre de 2003): 265–67. http://dx.doi.org/10.1007/s00417-003-0818-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Pakarinen, Leenamaija, Kaija Tuppurainen, Pekka Laippala, Maija M�ntyj�rvi y Heikki Puhakka. "The ophthalmological course of Usher syndrome type III". International Ophthalmology 19, n.º 5 (1995): 307–11. http://dx.doi.org/10.1007/bf00130927.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Urrea, Claudio y Alexis Mignogna. "Development of an expert system for pre-diagnosis of hypertension, diabetes mellitus type 2 and metabolic syndrome". Health Informatics Journal 26, n.º 4 (21 de julio de 2020): 2776–91. http://dx.doi.org/10.1177/1460458220937095.

Texto completo
Resumen
This study involved the development of an expert system for the pre-diagnosis of hypertension, diabetes mellitus type 2 and metabolic syndrome. The expert system has been developed using web technologies, PHP, Apache and MySQL with CLIPS tool; the expert system includes three algorithms designed by the authors, one for each disease. The objective of this study is to provide an expert system capable of performing a pre-diagnosis for early detection of hypertension, diabetes mellitus type 2 and metabolic syndrome. The methodology to build the system consists in associated risk factors, clinical variables diagnosis criteria based on World Health Organization standards in three algorithms and then develop a program that interacts with users, besides the expert system is compared with the existing expert systems in order to show its originality and innovation. The rules of systems are designed using CLIPS systems and the Architecture Apache, MySQL and PHP for the user interface and database. The system was validated by 72 patient(s) and 3 real doctors, the total result over 72 patient(s) is low risk 16.6 percent, moderate risk 30.5 percent, moderate high risk 13.8 percent, high risk 23.6 percent, very high risk 15.2 percent, and the doctors’ feedback was similar to that shown by the system. The number of rules to create the algorithms and the criteria used were adequate and sufficient to obtain the pre-diagnosis of each disease; in addition, the languages used to design and create the web application were stable. All users who used the system obtained similar results to those obtained by doctors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Mansard, Luke, David Baux, Christel Vaché, Catherine Blanchet, Isabelle Meunier, Marjolaine Willems, Valérie Faugère et al. "The Study of a 231 French Patient Cohort Significantly Extends the Mutational Spectrum of the Two Major Usher Genes MYO7A and USH2A". International Journal of Molecular Sciences 22, n.º 24 (10 de diciembre de 2021): 13294. http://dx.doi.org/10.3390/ijms222413294.

Texto completo
Resumen
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kim, Joon Hyung, So Ra Bang, Jin Gu Jeong y Nam Chun Cho. "Type III Usher Syndrome in the Republic of Korea". Journal of the Korean Ophthalmological Society 61, n.º 4 (15 de abril de 2020): 444–48. http://dx.doi.org/10.3341/jkos.2020.61.4.444.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Iwasaki, Satoshi, Hidekane Yoshimura, Norito Takeichi, Hiroaki Satou, Kotaro Ishikawa, Kimitaka Kaga, Kozou Kumakawa et al. "Problem and Assignment for Distinguishing the Usher Syndrome Type". Nippon Jibiinkoka Gakkai Kaiho 115, n.º 10 (2012): 894–901. http://dx.doi.org/10.3950/jibiinkoka.115.894.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Fu, Qing, Mingchu Xu, Xue Chen, Xunlun Sheng, Zhisheng Yuan, Yani Liu, Huajin Li et al. "CEP78is mutated in a distinct type of Usher syndrome". Journal of Medical Genetics 54, n.º 3 (14 de septiembre de 2016): 190–95. http://dx.doi.org/10.1136/jmedgenet-2016-104166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Cockey, Carolyn Davis. "Early Diagnosis of Usher Syndrome Type 1 Now Possible". AWHONN Lifelines 7, n.º 4 (agosto de 2003): 314. http://dx.doi.org/10.1111/j.1552-6356.2003.tb00117.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

FARKAS, A., B. LESCH, B. VARSANYI y R. VA'MOS. "Phenotype characteristics of patients with Usher syndrome type 2". Acta Ophthalmologica Scandinavica 85 (2 de octubre de 2007): 0. http://dx.doi.org/10.1111/j.1600-0420.2007.01062_3240.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ebermann, I., M. H. J. Wiesen, E. Zrenner, I. Lopez, R. Pigeon, S. Kohl, H. Lowenheim, R. K. Koenekoop y H. J. Bolz. "GPR98 mutations cause Usher syndrome type 2 in males". Journal of Medical Genetics 46, n.º 4 (1 de abril de 2009): 277–80. http://dx.doi.org/10.1136/jmg.2008.059626.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía