Literatura académica sobre el tema "Upconverting nanomaterials"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Upconverting nanomaterials".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Upconverting nanomaterials"
Shah, Shreyas, Jing-Jing Liu, Nicholas Pasquale, Jinping Lai, Heather McGowan, Zhiping P. Pang y Ki-Bum Lee. "Hybrid upconversion nanomaterials for optogenetic neuronal control". Nanoscale 7, n.º 40 (2015): 16571–77. http://dx.doi.org/10.1039/c5nr03411f.
Texto completoChan, Emory M. "Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications". Chemical Society Reviews 44, n.º 6 (2015): 1653–79. http://dx.doi.org/10.1039/c4cs00205a.
Texto completoGulzar, Arif, Jiating Xu, Piaoping Yang, Fei He y Liangge Xu. "Upconversion processes: versatile biological applications and biosafety". Nanoscale 9, n.º 34 (2017): 12248–82. http://dx.doi.org/10.1039/c7nr01836c.
Texto completoZhang, Zhen, Xiao-Lian Zhang y Bin Li. "Mesoporous Silica-Coated Upconverting Nanorods for Singlet Oxygen Generation: Synthesis and Performance". Materials 14, n.º 13 (30 de junio de 2021): 3660. http://dx.doi.org/10.3390/ma14133660.
Texto completoHilderbrand, Scott A., Fangwei Shao, Christopher Salthouse, Umar Mahmood y Ralph Weissleder. "Upconverting luminescent nanomaterials: application to in vivo bioimaging". Chemical Communications, n.º 28 (2009): 4188. http://dx.doi.org/10.1039/b905927j.
Texto completoLi, Xiaomin, Fan Zhang y Dongyuan Zhao. "Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges". Nano Today 8, n.º 6 (diciembre de 2013): 643–76. http://dx.doi.org/10.1016/j.nantod.2013.11.003.
Texto completoGhazyani, Nahid, Mohammad Hossein Majles Ara y Mohammad Raoufi. "Nonlinear photoresponse of NaYF4:Yb,Er@NaYF4 nanocrystals under green CW excitation: a comprehensive study". RSC Advances 10, n.º 43 (2020): 25696–702. http://dx.doi.org/10.1039/d0ra01380c.
Texto completoMyers, Peter. "Claudia Altavilla (Ed): Upconverting Nanomaterials. Perspectives, Synthesis and Application". Chromatographia 80, n.º 5 (20 de marzo de 2017): 833–34. http://dx.doi.org/10.1007/s10337-017-3278-2.
Texto completoJoshi, Tanmaya, Constantin Mamat y Holger Stephan. "Contemporary Synthesis of Ultrasmall (sub‐10 nm) Upconverting Nanomaterials". ChemistryOpen 9, n.º 6 (junio de 2020): 703–12. http://dx.doi.org/10.1002/open.202000073.
Texto completoHyppänen, Iko, Jorma Hölsä, Jouko Kankare, Mika Lastusaari y Laura Pihlgren. "Upconversion Properties of Nanocrystalline ZrO2:Yb3+, Er3+Phosphors". Journal of Nanomaterials 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/16391.
Texto completoTesis sobre el tema "Upconverting nanomaterials"
Purohit, Bhagyesh. "Precursors-guided synthesis of upconverting nanomaterials for near-infrared driven photocatalysis". Electronic Thesis or Diss., Lyon, 2021. https://n2t.net/ark:/47881/m6sn08q4.
Texto completoThe utilization of solar energy to solve environmental problems such as water detoxification, air purification and hydrogen production has attracted great interest from the scientific community over the last two decades. Solar photocatalysis is an interesting avenue to target all these environmental issues. Currently, technologies do not yet allow for the efficient use of a significant portion of the solar spectrum, namely the infrared, which corresponds to nearly ~48% of the total solar spectrum. This thesis aims at preparing nanocomposite materials that use these low energy solar photons by converting them into high energy UV and visible photons and then using them for classical photocatalysis. To achieve this, two major aspects of the preparation of this modified photocatalyst were emphasized. Firstly, the synthesis of materials that could efficiently convert currently unused photons and secondly, the preparation of their composite with TiO2, the most widely used photocatalyst.This doctoral thesis focuses on an approach based on "upconversion" in order to extend the range of use of the solar spectrum. To achieve this goal, two optimization strategies were addressed. The optimization of the quantum efficiency of upconversion nanoparticles (UCNPs) using new anhydrous precursors and, the preparation of UCNPs-TiO2 nanocatalyst using metallogels and/or core-shell structures. Finally, we test the objective of using low energy infrared solar photons by performing photocatalysis under IR irradiation only using the platform developed in this work
Rafiei, Miandashti Ali. "Synthesis, Characterization, and Photothermal Study of Plasmonic Nanostructures using Luminescence Nanomaterials". Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1553788360252461.
Texto completoLibros sobre el tema "Upconverting nanomaterials"
Altavilla, Claudia, ed. Upconverting Nanomaterials. Boca Raton : Taylor & Francis, 2016. | Series: Nanomaterials and: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535.
Texto completoAfolayan, Mudiwa. Upconverting Nanomaterials. Scitus Academics LLC, 2018.
Buscar texto completoAltavilla, Claudia. Upconverting Nanomaterials. Taylor & Francis Group, 2020.
Buscar texto completoUpconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Buscar texto completoAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Buscar texto completoAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Buscar texto completoAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Buscar texto completoAltavilla, Claudia. Upconverting Nanomaterials: Perspectives, Synthesis, and Applications. Taylor & Francis Group, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Upconverting nanomaterials"
Hemmer, Eva y Fiorenzo Vetrone. "11 Nanothermometry Using Upconverting Nanoparticles". En Nanomaterials and their Applications, 319–58. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-12.
Texto completoBaride, A. y J. Meruga. "10 Upconverting Nanoparticles for Security Applications". En Nanomaterials and their Applications, 291–318. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-11.
Texto completoSpeghini, Adolfo, Marco Pedroni, Nelsi Zaccheroni y Enrico Rampazzo. "3 Synthesis of Upconverting Nanomaterials: Designing the Composition and Nanostructure". En Nanomaterials and their Applications, 37–68. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-4.
Texto completoProrok, K., D. Wawrzyńczyk, M. Misiak y A. Bednarkiewicz. "8 Active–Core–Active-Shell Upconverting Nanoparticles: Novel Mechanisms, Features, and Perspectives for Biolabeling". En Nanomaterials and their Applications, 195–254. CRC Press, 2016. http://dx.doi.org/10.1201/9781315371535-9.
Texto completoActas de conferencias sobre el tema "Upconverting nanomaterials"
Zhang, Jin y Longyi Chen. "Facile synthesis of amine functionalized NaGdF4: Yb3+, Er3+ upconverting nanoparticles (Conference Presentation)". En Physical Chemistry of Interfaces and Nanomaterials XV, editado por Artem A. Bakulin, Natalie Banerji y Robert Lovrincic. SPIE, 2016. http://dx.doi.org/10.1117/12.2238360.
Texto completo