Artículos de revistas sobre el tema "Unsupervised deep neural networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Unsupervised deep neural networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Banzi, Jamal, Isack Bulugu y Zhongfu Ye. "Deep Predictive Neural Network: Unsupervised Learning for Hand Pose Estimation". International Journal of Machine Learning and Computing 9, n.º 4 (agosto de 2019): 432–39. http://dx.doi.org/10.18178/ijmlc.2019.9.4.822.
Texto completoGuo, Wenqi, Weixiong Zhang, Zheng Zhang, Ping Tang y Shichen Gao. "Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis". Remote Sensing 14, n.º 15 (29 de julio de 2022): 3635. http://dx.doi.org/10.3390/rs14153635.
Texto completoXu, Jianqiao, Zhaolu Zuo, Danchao Wu, Bing Li, Xiaoni Li y Deyi Kong. "Bearing Defect Detection with Unsupervised Neural Networks". Shock and Vibration 2021 (19 de agosto de 2021): 1–11. http://dx.doi.org/10.1155/2021/9544809.
Texto completoFeng, Yu y Hui Sun. "Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method". International Journal of Information Technology and Web Engineering 18, n.º 1 (1 de diciembre de 2023): 1–17. http://dx.doi.org/10.4018/ijitwe.334365.
Texto completoSun, Yanan, Gary G. Yen y Zhang Yi. "Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations". IEEE Transactions on Evolutionary Computation 23, n.º 1 (febrero de 2019): 89–103. http://dx.doi.org/10.1109/tevc.2018.2808689.
Texto completoShi, Yu, Cien Fan, Lian Zou, Caixia Sun y Yifeng Liu. "Unsupervised Adversarial Defense through Tandem Deep Image Priors". Electronics 9, n.º 11 (19 de noviembre de 2020): 1957. http://dx.doi.org/10.3390/electronics9111957.
Texto completoThakur, Amey. "Generative Adversarial Networks". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Texto completoFerles, Christos, Yannis Papanikolaou, Stylianos P. Savaidis y Stelios A. Mitilineos. "Deep Self-Organizing Map of Convolutional Layers for Clustering and Visualizing Image Data". Machine Learning and Knowledge Extraction 3, n.º 4 (14 de noviembre de 2021): 879–99. http://dx.doi.org/10.3390/make3040044.
Texto completoZhuang, Chengxu, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo y Daniel L. K. Yamins. "Unsupervised neural network models of the ventral visual stream". Proceedings of the National Academy of Sciences 118, n.º 3 (11 de enero de 2021): e2014196118. http://dx.doi.org/10.1073/pnas.2014196118.
Texto completoLin, Baihan. "Regularity Normalization: Neuroscience-Inspired Unsupervised Attention across Neural Network Layers". Entropy 24, n.º 1 (28 de diciembre de 2021): 59. http://dx.doi.org/10.3390/e24010059.
Texto completoAbiyev, Rahib H. y Mohammad Khaleel Sallam Ma’aitah. "Deep Convolutional Neural Networks for Chest Diseases Detection". Journal of Healthcare Engineering 2018 (1 de agosto de 2018): 1–11. http://dx.doi.org/10.1155/2018/4168538.
Texto completoBrowne, David, Michael Giering y Steven Prestwich. "PulseNetOne: Fast Unsupervised Pruning of Convolutional Neural Networks for Remote Sensing". Remote Sensing 12, n.º 7 (29 de marzo de 2020): 1092. http://dx.doi.org/10.3390/rs12071092.
Texto completoYi, Cheng. "Application of Convolutional Networks in Clothing Design from the Perspective of Deep Learning". Scientific Programming 2022 (27 de septiembre de 2022): 1–8. http://dx.doi.org/10.1155/2022/6173981.
Texto completoGhosh, Saheb, Sathis Kumar B y Kathir Deivanai. "DETECTION OF WHALES USING DEEP LEARNING METHODS AND NEURAL NETWORKS". Asian Journal of Pharmaceutical and Clinical Research 10, n.º 13 (1 de abril de 2017): 489. http://dx.doi.org/10.22159/ajpcr.2017.v10s1.20767.
Texto completoSolomon, Enoch, Abraham Woubie y Krzysztof J. Cios. "UFace: An Unsupervised Deep Learning Face Verification System". Electronics 11, n.º 23 (26 de noviembre de 2022): 3909. http://dx.doi.org/10.3390/electronics11233909.
Texto completoAltuntas, Volkan. "NodeVector: A Novel Network Node Vectorization with Graph Analysis and Deep Learning". Applied Sciences 14, n.º 2 (16 de enero de 2024): 775. http://dx.doi.org/10.3390/app14020775.
Texto completoMa, Chao, Yun Gu, Chen Gong, Jie Yang y Deying Feng. "Unsupervised Video Hashing via Deep Neural Network". Neural Processing Letters 47, n.º 3 (17 de marzo de 2018): 877–90. http://dx.doi.org/10.1007/s11063-018-9812-x.
Texto completoNaidu, D. J. Samatha y T. Mahammad Rafi. "HANDWRITTEN CHARACTER RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS". International Journal of Computer Science and Mobile Computing 10, n.º 8 (30 de agosto de 2021): 41–45. http://dx.doi.org/10.47760/ijcsmc.2021.v10i08.007.
Texto completoHu, Ruiqi, Shirui Pan, Guodong Long, Qinghua Lu, Liming Zhu y Jing Jiang. "Going Deep: Graph Convolutional Ladder-Shape Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 03 (3 de abril de 2020): 2838–45. http://dx.doi.org/10.1609/aaai.v34i03.5673.
Texto completoHuang, Qiuyuan, Li Deng, Dapeng Wu, Chang Liu y Xiaodong He. "Attentive Tensor Product Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 1344–51. http://dx.doi.org/10.1609/aaai.v33i01.33011344.
Texto completoHuang, Jiabo, Qi Dong, Shaogang Gong y Xiatian Zhu. "Unsupervised Deep Learning via Affinity Diffusion". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11029–36. http://dx.doi.org/10.1609/aaai.v34i07.6757.
Texto completoTyshchenko, Vitalii. "ANALYSIS OF TRAINING METHODS AND NEURAL NETWORK TOOLS FOR FAKE NEWS DETECTION". Cybersecurity: Education, Science, Technique 4, n.º 20 (2023): 20–34. http://dx.doi.org/10.28925/2663-4023.2023.20.2034.
Texto completoHeo, Seongmin y Jay H. Lee. "Statistical Process Monitoring of the Tennessee Eastman Process Using Parallel Autoassociative Neural Networks and a Large Dataset". Processes 7, n.º 7 (1 de julio de 2019): 411. http://dx.doi.org/10.3390/pr7070411.
Texto completoCao, Yanpeng, Dayan Guan, Weilin Huang, Jiangxin Yang, Yanlong Cao y Yu Qiao. "Pedestrian detection with unsupervised multispectral feature learning using deep neural networks". Information Fusion 46 (marzo de 2019): 206–17. http://dx.doi.org/10.1016/j.inffus.2018.06.005.
Texto completoZhang, Pengfei y Xiaoming Ju. "Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks". Mathematical Problems in Engineering 2021 (13 de septiembre de 2021): 1–18. http://dx.doi.org/10.1155/2021/8268249.
Texto completoKhodayar, Mahdi y Jacob Regan. "Deep Neural Networks in Power Systems: A Review". Energies 16, n.º 12 (17 de junio de 2023): 4773. http://dx.doi.org/10.3390/en16124773.
Texto completoLe Roux, Nicolas y Yoshua Bengio. "Deep Belief Networks Are Compact Universal Approximators". Neural Computation 22, n.º 8 (agosto de 2010): 2192–207. http://dx.doi.org/10.1162/neco.2010.08-09-1081.
Texto completoZhu, Yi, Xinke Zhou y Xindong Wu. "Unsupervised Domain Adaptation via Stacked Convolutional Autoencoder". Applied Sciences 13, n.º 1 (29 de diciembre de 2022): 481. http://dx.doi.org/10.3390/app13010481.
Texto completoLin, Yi-Nan, Tsang-Yen Hsieh, Cheng-Ying Yang, Victor RL Shen, Tony Tong-Ying Juang y Wen-Hao Chen. "Deep Petri nets of unsupervised and supervised learning". Measurement and Control 53, n.º 7-8 (9 de junio de 2020): 1267–77. http://dx.doi.org/10.1177/0020294020923375.
Texto completoSewani, Harshini y Rasha Kashef. "An Autoencoder-Based Deep Learning Classifier for Efficient Diagnosis of Autism". Children 7, n.º 10 (14 de octubre de 2020): 182. http://dx.doi.org/10.3390/children7100182.
Texto completoAjay, P., B. Nagaraj, R. Arun Kumar, Ruihang Huang y P. Ananthi. "Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm". Scanning 2022 (6 de junio de 2022): 1–9. http://dx.doi.org/10.1155/2022/1200860.
Texto completoMamun, Abdullah Al, Em Poh Ping, Jakir Hossen, Anik Tahabilder y Busrat Jahan. "A Comprehensive Review on Lane Marking Detection Using Deep Neural Networks". Sensors 22, n.º 19 (10 de octubre de 2022): 7682. http://dx.doi.org/10.3390/s22197682.
Texto completoVélez, Paulina, Manuel Miranda, Carmen Serrano y Begoña Acha. "Does a Previous Segmentation Improve the Automatic Detection of Basal Cell Carcinoma Using Deep Neural Networks?" Applied Sciences 12, n.º 4 (17 de febrero de 2022): 2092. http://dx.doi.org/10.3390/app12042092.
Texto completoChu, Lei, Hao Pan y Wenping Wang. "Unsupervised Shape Completion via Deep Prior in the Neural Tangent Kernel Perspective". ACM Transactions on Graphics 40, n.º 3 (4 de julio de 2021): 1–17. http://dx.doi.org/10.1145/3459234.
Texto completoLi, Yibing, Sitong Zhang, Xiang Li y Fang Ye. "Remote Sensing Image Classification with Few Labeled Data Using Semisupervised Learning". Wireless Communications and Mobile Computing 2023 (20 de abril de 2023): 1–11. http://dx.doi.org/10.1155/2023/7724264.
Texto completoZhu, Yong, Yongwei Tao y Zequn Li. "Short-circuit Current-based Parametrically Identification for Doubly Fed Induction Generator". Advances in Engineering Technology Research 9, n.º 1 (27 de diciembre de 2023): 133. http://dx.doi.org/10.56028/aetr.9.1.133.2024.
Texto completoPrashant Krishnan, V., S. Rajarajeswari, Venkat Krishnamohan, Vivek Chandra Sheel y R. Deepak. "Music Generation Using Deep Learning Techniques". Journal of Computational and Theoretical Nanoscience 17, n.º 9 (1 de julio de 2020): 3983–87. http://dx.doi.org/10.1166/jctn.2020.9003.
Texto completoZhu, Yancheng, Qiwei Wu y Jianzi Liu. "A Comparative Study of Contrastive Learning-Based Few-Shot Unsupervised Algorithms for Efficient Deep Learning". Journal of Physics: Conference Series 2560, n.º 1 (1 de agosto de 2023): 012048. http://dx.doi.org/10.1088/1742-6596/2560/1/012048.
Texto completoYang, Geunbo, Wongyu Lee, Youjung Seo, Choongseop Lee, Woojoon Seok, Jongkil Park, Donggyu Sim y Cheolsoo Park. "Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons". Sensors 23, n.º 16 (17 de agosto de 2023): 7232. http://dx.doi.org/10.3390/s23167232.
Texto completoSoydaner, Derya. "A Comparison of Optimization Algorithms for Deep Learning". International Journal of Pattern Recognition and Artificial Intelligence 34, n.º 13 (30 de abril de 2020): 2052013. http://dx.doi.org/10.1142/s0218001420520138.
Texto completoPolanski, Jaroslaw. "Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry". International Journal of Molecular Sciences 23, n.º 5 (3 de marzo de 2022): 2797. http://dx.doi.org/10.3390/ijms23052797.
Texto completoWani, M. Arif y Saduf Afzal. "Optimization of deep network models through fine tuning". International Journal of Intelligent Computing and Cybernetics 11, n.º 3 (13 de agosto de 2018): 386–403. http://dx.doi.org/10.1108/ijicc-06-2017-0070.
Texto completoLiu, MengYang, MingJun Li y XiaoYang Zhang. "The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents". Computational Intelligence and Neuroscience 2022 (6 de junio de 2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Texto completoLiu, MengYang, MingJun Li y XiaoYang Zhang. "The Application of the Unsupervised Migration Method Based on Deep Learning Model in the Marketing Oriented Allocation of High Level Accounting Talents". Computational Intelligence and Neuroscience 2022 (6 de junio de 2022): 1–10. http://dx.doi.org/10.1155/2022/5653942.
Texto completoCheerla, Anika y Olivier Gevaert. "Deep learning with multimodal representation for pancancer prognosis prediction". Bioinformatics 35, n.º 14 (julio de 2019): i446—i454. http://dx.doi.org/10.1093/bioinformatics/btz342.
Texto completoZaveri, Zainab, Dhruv Gosain y Arul Prakash M. "Optical Compute Engine Using Deep CNN". International Journal of Engineering & Technology 7, n.º 2.24 (25 de abril de 2018): 541. http://dx.doi.org/10.14419/ijet.v7i2.24.12157.
Texto completoLi, Jinlong, Xiaochen Yuan, Jinfeng Li, Guoheng Huang, Ping Li y Li Feng. "CD-SDN: Unsupervised Sensitivity Disparity Networks for Hyper-Spectral Image Change Detection". Remote Sensing 14, n.º 19 (26 de septiembre de 2022): 4806. http://dx.doi.org/10.3390/rs14194806.
Texto completoZhu, Chang-Hao y Jie Zhang. "Developing Soft Sensors for Polymer Melt Index in an Industrial Polymerization Process Using Deep Belief Networks". International Journal of Automation and Computing 17, n.º 1 (5 de noviembre de 2019): 44–54. http://dx.doi.org/10.1007/s11633-019-1203-x.
Texto completoHoernle, Nick, Rafael Michael Karampatsis, Vaishak Belle y Kobi Gal. "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 5 (28 de junio de 2022): 5700–5709. http://dx.doi.org/10.1609/aaai.v36i5.20512.
Texto completoLi, Xuelong, Zhenghang Yuan y Qi Wang. "Unsupervised Deep Noise Modeling for Hyperspectral Image Change Detection". Remote Sensing 11, n.º 3 (28 de enero de 2019): 258. http://dx.doi.org/10.3390/rs11030258.
Texto completo