Literatura académica sobre el tema "Unsupervised deep neural networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Unsupervised deep neural networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Unsupervised deep neural networks"
Banzi, Jamal, Isack Bulugu y Zhongfu Ye. "Deep Predictive Neural Network: Unsupervised Learning for Hand Pose Estimation". International Journal of Machine Learning and Computing 9, n.º 4 (agosto de 2019): 432–39. http://dx.doi.org/10.18178/ijmlc.2019.9.4.822.
Texto completoGuo, Wenqi, Weixiong Zhang, Zheng Zhang, Ping Tang y Shichen Gao. "Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis". Remote Sensing 14, n.º 15 (29 de julio de 2022): 3635. http://dx.doi.org/10.3390/rs14153635.
Texto completoXu, Jianqiao, Zhaolu Zuo, Danchao Wu, Bing Li, Xiaoni Li y Deyi Kong. "Bearing Defect Detection with Unsupervised Neural Networks". Shock and Vibration 2021 (19 de agosto de 2021): 1–11. http://dx.doi.org/10.1155/2021/9544809.
Texto completoFeng, Yu y Hui Sun. "Basketball Footwork and Application Supported by Deep Learning Unsupervised Transfer Method". International Journal of Information Technology and Web Engineering 18, n.º 1 (1 de diciembre de 2023): 1–17. http://dx.doi.org/10.4018/ijitwe.334365.
Texto completoSun, Yanan, Gary G. Yen y Zhang Yi. "Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations". IEEE Transactions on Evolutionary Computation 23, n.º 1 (febrero de 2019): 89–103. http://dx.doi.org/10.1109/tevc.2018.2808689.
Texto completoShi, Yu, Cien Fan, Lian Zou, Caixia Sun y Yifeng Liu. "Unsupervised Adversarial Defense through Tandem Deep Image Priors". Electronics 9, n.º 11 (19 de noviembre de 2020): 1957. http://dx.doi.org/10.3390/electronics9111957.
Texto completoThakur, Amey. "Generative Adversarial Networks". International Journal for Research in Applied Science and Engineering Technology 9, n.º 8 (31 de agosto de 2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Texto completoFerles, Christos, Yannis Papanikolaou, Stylianos P. Savaidis y Stelios A. Mitilineos. "Deep Self-Organizing Map of Convolutional Layers for Clustering and Visualizing Image Data". Machine Learning and Knowledge Extraction 3, n.º 4 (14 de noviembre de 2021): 879–99. http://dx.doi.org/10.3390/make3040044.
Texto completoZhuang, Chengxu, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C. Frank, James J. DiCarlo y Daniel L. K. Yamins. "Unsupervised neural network models of the ventral visual stream". Proceedings of the National Academy of Sciences 118, n.º 3 (11 de enero de 2021): e2014196118. http://dx.doi.org/10.1073/pnas.2014196118.
Texto completoLin, Baihan. "Regularity Normalization: Neuroscience-Inspired Unsupervised Attention across Neural Network Layers". Entropy 24, n.º 1 (28 de diciembre de 2021): 59. http://dx.doi.org/10.3390/e24010059.
Texto completoTesis sobre el tema "Unsupervised deep neural networks"
Donati, Lorenzo. "Domain Adaptation through Deep Neural Networks for Health Informatics". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14888/.
Texto completoAhn, Euijoon. "Unsupervised Deep Feature Learning for Medical Image Analysis". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23002.
Texto completoCherti, Mehdi. "Deep generative neural networks for novelty generation : a foundational framework, metrics and experiments". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS029/document.
Texto completoIn recent years, significant advances made in deep neural networks enabled the creation of groundbreaking technologies such as self-driving cars and voice-enabled personal assistants. Almost all successes of deep neural networks are about prediction, whereas the initial breakthroughs came from generative models. Today, although we have very powerful deep generative modeling techniques, these techniques are essentially being used for prediction or for generating known objects (i.e., good quality images of known classes): any generated object that is a priori unknown is considered as a failure mode (Salimans et al., 2016) or as spurious (Bengio et al., 2013b). In other words, when prediction seems to be the only possible objective, novelty is seen as an error that researchers have been trying hard to eliminate. This thesis defends the point of view that, instead of trying to eliminate these novelties, we should study them and the generative potential of deep nets to create useful novelty, especially given the economic and societal importance of creating new objects in contemporary societies. The thesis sets out to study novelty generation in relationship with data-driven knowledge models produced by deep generative neural networks. Our first key contribution is the clarification of the importance of representations and their impact on the kind of novelties that can be generated: a key consequence is that a creative agent might need to rerepresent known objects to access various kinds of novelty. We then demonstrate that traditional objective functions of statistical learning theory, such as maximum likelihood, are not necessarily the best theoretical framework for studying novelty generation. We propose several other alternatives at the conceptual level. A second key result is the confirmation that current models, with traditional objective functions, can indeed generate unknown objects. This also shows that even though objectives like maximum likelihood are designed to eliminate novelty, practical implementations do generate novelty. Through a series of experiments, we study the behavior of these models and the novelty they generate. In particular, we propose a new task setup and metrics for selecting good generative models. Finally, the thesis concludes with a series of experiments clarifying the characteristics of models that can exhibit novelty. Experiments show that sparsity, noise level, and restricting the capacity of the net eliminates novelty and that models that are better at recognizing novelty are also good at generating novelty
Kilinc, Ismail Ozsel. "Graph-based Latent Embedding, Annotation and Representation Learning in Neural Networks for Semi-supervised and Unsupervised Settings". Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7415.
Texto completoMcClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Texto completoBoschini, Matteo. "Unsupervised Learning of Scene Flow". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16226/.
Texto completoKalinicheva, Ekaterina. "Unsupervised satellite image time series analysis using deep learning techniques". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS335.
Texto completoThis thesis presents a set of unsupervised algorithms for satellite image time series (SITS) analysis. Our methods exploit machine learning algorithms and, in particular, neural networks to detect different spatio-temporal entities and their eventual changes in the time.In our thesis, we aim to identify three different types of temporal behavior: no change areas, seasonal changes (vegetation and other phenomena that have seasonal recurrence) and non-trivial changes (permanent changes such as constructions or demolishment, crop rotation, etc). Therefore, we propose two frameworks: one for detection and clustering of non-trivial changes and another for clustering of “stable” areas (seasonal changes and no change areas). The first framework is composed of two steps which are bi-temporal change detection and the interpretation of detected changes in a multi-temporal context with graph-based approaches. The bi-temporal change detection is performed for each pair of consecutive images of the SITS and is based on feature translation with autoencoders (AEs). At the next step, the changes from different timestamps that belong to the same geographic area form evolution change graphs. The graphs are then clustered using a recurrent neural networks AE model to identify different types of change behavior. For the second framework, we propose an approach for object-based SITS clustering. First, we encode SITS with a multi-view 3D convolutional AE in a single image. Second, we perform a two steps SITS segmentation using the encoded SITS and original images. Finally, the obtained segments are clustered exploiting their encoded descriptors
Yuan, Xiao. "Graph neural networks for spatial gene expression analysis of the developing human heart". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-427330.
Texto completoVENTURA, FRANCESCO. "Explaining black-box deep neural models' predictions, behaviors, and performances through the unsupervised mining of their inner knowledge". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2912972.
Texto completoLi, Yingzhen. "Approximate inference : new visions". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277549.
Texto completoLibros sobre el tema "Unsupervised deep neural networks"
E, Hinton Geoffrey y Sejnowski Terrence J, eds. Unsupervised learning: Foundations of neural computation. Cambridge, Mass: MIT Press, 1999.
Buscar texto completoBaruque, Bruno. Fusion methods for unsupervised learning ensembles. Berlin: Springer, 2010.
Buscar texto completoAggarwal, Charu C. Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94463-0.
Texto completoAggarwal, Charu C. Neural Networks and Deep Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29642-0.
Texto completoMoolayil, Jojo. Learn Keras for Deep Neural Networks. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4240-7.
Texto completoCaterini, Anthony L. y Dong Eui Chang. Deep Neural Networks in a Mathematical Framework. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75304-1.
Texto completoRazaghi, Hooshmand Shokri. Statistical Machine Learning & Deep Neural Networks Applied to Neural Data Analysis. [New York, N.Y.?]: [publisher not identified], 2020.
Buscar texto completoFingscheidt, Tim, Hanno Gottschalk y Sebastian Houben, eds. Deep Neural Networks and Data for Automated Driving. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4.
Texto completoModrzyk, Nicolas. Real-Time IoT Imaging with Deep Neural Networks. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5722-7.
Texto completoSupervised and unsupervised pattern recognition: Feature extraction and computational intelligence. Boca Raton, Fla: CRC Press, 2000.
Buscar texto completoCapítulos de libros sobre el tema "Unsupervised deep neural networks"
Song, Zeyang, Xi Wu, Mengwen Yuan y Huajin Tang. "An Unsupervised Spiking Deep Neural Network for Object Recognition". En Advances in Neural Networks – ISNN 2019, 361–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22808-8_36.
Texto completoDeshwal, Deepti y Pardeep Sangwan. "A Comprehensive Study of Deep Neural Networks for Unsupervised Deep Learning". En Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, 101–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51920-9_7.
Texto completoZhou, Jianchao, Xiaoou Chen y Deshun Yang. "Multimodel Music Emotion Recognition Using Unsupervised Deep Neural Networks". En Lecture Notes in Electrical Engineering, 27–39. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8707-4_3.
Texto completoYan, Ruqiang y Zhibin Zhao. "Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis". En Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems, 109–36. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003474463-9.
Texto completoDreher, Kris K., Leonardo Ayala, Melanie Schellenberg, Marco Hübner, Jan-Hinrich Nölke, Tim J. Adler, Silvia Seidlitz et al. "Unsupervised Domain Transfer with Conditional Invertible Neural Networks". En Lecture Notes in Computer Science, 770–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43907-0_73.
Texto completoDas, Debasmit y C. S. George Lee. "Graph Matching and Pseudo-Label Guided Deep Unsupervised Domain Adaptation". En Artificial Neural Networks and Machine Learning – ICANN 2018, 342–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01424-7_34.
Texto completoSlama, Dirk. "Artificial Intelligence 101". En The Digital Playbook, 11–17. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-88221-1_2.
Texto completoZamora-Martínez, Francisco, Javier Muñoz-Almaraz y Juan Pardo. "Integration of Unsupervised and Supervised Criteria for Deep Neural Networks Training". En Artificial Neural Networks and Machine Learning – ICANN 2016, 55–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44781-0_7.
Texto completoLin, Xianghong y Pangao Du. "Spike-Train Level Unsupervised Learning Algorithm for Deep Spiking Belief Networks". En Artificial Neural Networks and Machine Learning – ICANN 2020, 634–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61616-8_51.
Texto completoLiang, Yu, Yi Yang, Furao Shen, Jinxi Zhao y Tao Zhu. "An Incremental Deep Learning Network for On-line Unsupervised Feature Extraction". En Neural Information Processing, 383–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70096-0_40.
Texto completoActas de conferencias sobre el tema "Unsupervised deep neural networks"
Cerisara, Christophe, Paul Caillon y Guillaume Le Berre. "Unsupervised Post-Tuning of Deep Neural Networks". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534198.
Texto completoSato, Kazuki, Kenta Hama, Takashi Matsubara y Kuniaki Uehara. "Predictable Uncertainty-Aware Unsupervised Deep Anomaly Segmentation". En 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852144.
Texto completoXie, Ying, Linh Le y Jie Hao. "Unsupervised deep kernel for high dimensional data". En 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965868.
Texto completoBraga, Pedro. "Backpropagating the Unsupervised Error of Self-Organizing Maps to Deep Neural Networks". En LatinX in AI at Neural Information Processing Systems Conference 2019. Journal of LatinX in AI Research, 2019. http://dx.doi.org/10.52591/lxai2019120818.
Texto completoJUNGES, RAFAEL, ZAHRA RASTIN, LUCA LOMAZZI, MARCO GIGLIO y FRANCESCO CADINI. "DAMAGE LOCALIZATION FRAMEWORKS BASED ON UNSUPERVISED DEEP LEARNING NEURAL NETWORKS". En Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36889.
Texto completoFeng, Guanchao, J. Gerald Quirk y Petar M. Djuric. "Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes". En 2018 14th Symposium on Neural Networks and Applications (NEUREL). IEEE, 2018. http://dx.doi.org/10.1109/neurel.2018.8586992.
Texto completoYu, Chaohui, Jindong Wang, Yiqiang Chen y Zijing Wu. "Accelerating Deep Unsupervised Domain Adaptation with Transfer Channel Pruning". En 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8851810.
Texto completoChen, Dong, Miaomiao Cheng, Chen Min y Liping Jing. "Unsupervised Deep Imputed Hashing for Partial Cross-modal Retrieval". En 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206611.
Texto completoTian, Qiangxing, Jinxin Liu, Guanchu Wang y Donglin Wang. "Unsupervised Discovery of Transitional Skills for Deep Reinforcement Learning". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533820.
Texto completoWang, Qian, Fanlin Meng y Toby P. Breckon. "On Fine-Tuned Deep Features for Unsupervised Domain Adaptation". En 2023 International Joint Conference on Neural Networks (IJCNN). IEEE, 2023. http://dx.doi.org/10.1109/ijcnn54540.2023.10191262.
Texto completoInformes sobre el tema "Unsupervised deep neural networks"
Yu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang y Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, diciembre de 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Texto completoMbani, Benson, Timm Schoening y Jens Greinert. Automated and Integrated Seafloor Classification Workflow (AI-SCW). GEOMAR, mayo de 2023. http://dx.doi.org/10.3289/sw_2_2023.
Texto completoKoh, Christopher Fu-Chai y Sergey Igorevich Magedov. Bond Order Prediction Using Deep Neural Networks. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1557202.
Texto completoShevitski, Brian, Yijing Watkins, Nicole Man y Michael Girard. Digital Signal Processing Using Deep Neural Networks. Office of Scientific and Technical Information (OSTI), abril de 2023. http://dx.doi.org/10.2172/1984848.
Texto completoLin, Youzuo. Physics-guided Machine Learning: from Supervised Deep Networks to Unsupervised Lightweight Models. Office of Scientific and Technical Information (OSTI), agosto de 2023. http://dx.doi.org/10.2172/1994110.
Texto completoChavez, Wesley. An Exploration of Linear Classifiers for Unsupervised Spiking Neural Networks with Event-Driven Data. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.6323.
Texto completoTalathi, S. S. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems. Office of Scientific and Technical Information (OSTI), junio de 2017. http://dx.doi.org/10.2172/1366924.
Texto completoArmstrong, Derek Elswick y Joseph Gabriel Gorka. Using Deep Neural Networks to Extract Fireball Parameters from Infrared Spectral Data. Office of Scientific and Technical Information (OSTI), mayo de 2020. http://dx.doi.org/10.2172/1623398.
Texto completoThulasidasan, Sunil, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya y Sarah E. Michalak. On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks. Office of Scientific and Technical Information (OSTI), junio de 2019. http://dx.doi.org/10.2172/1525811.
Texto completoEllis, John, Attila Cangi, Normand Modine, John Stephens, Aidan Thompson y Sivasankaran Rajamanickam. Accelerating Finite-temperature Kohn-Sham Density Functional Theory\ with Deep Neural Networks. Office of Scientific and Technical Information (OSTI), octubre de 2020. http://dx.doi.org/10.2172/1677521.
Texto completo