Literatura académica sobre el tema "Unit multiple interval graphs"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Unit multiple interval graphs".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Unit multiple interval graphs"
Ardévol Martínez, Virginia, Romeo Rizzi, Florian Sikora y Stéphane Vialette. "Recognizing unit multiple interval graphs is hard". Discrete Applied Mathematics 360 (enero de 2025): 258–74. http://dx.doi.org/10.1016/j.dam.2024.09.011.
Texto completoCardoza, Jacqueline E., Carina J. Gronlund, Justin Schott, Todd Ziegler, Brian Stone y Marie S. O’Neill. "Heat-Related Illness Is Associated with Lack of Air Conditioning and Pre-Existing Health Problems in Detroit, Michigan, USA: A Community-Based Participatory Co-Analysis of Survey Data". International Journal of Environmental Research and Public Health 17, n.º 16 (7 de agosto de 2020): 5704. http://dx.doi.org/10.3390/ijerph17165704.
Texto completoRautenbach, Dieter y Jayme L. Szwarcfiter. "Unit Interval Graphs". Electronic Notes in Discrete Mathematics 38 (diciembre de 2011): 737–42. http://dx.doi.org/10.1016/j.endm.2011.10.023.
Texto completoDourado, Mitre C., Van Bang Le, Fábio Protti, Dieter Rautenbach y Jayme L. Szwarcfiter. "Mixed unit interval graphs". Discrete Mathematics 312, n.º 22 (noviembre de 2012): 3357–63. http://dx.doi.org/10.1016/j.disc.2012.07.037.
Texto completoGrippo, Luciano N. "Characterizing interval graphs which are probe unit interval graphs". Discrete Applied Mathematics 262 (junio de 2019): 83–95. http://dx.doi.org/10.1016/j.dam.2019.02.022.
Texto completoKulik, Anatoliy, Sergey Pasichnik y Dmytro Sokol. "MODELING OF PHYSICAL PROCESSES OF ENERGY CONVERSION IN SMALL-SIZED VORTEX ENERGY SEPARATORS". Aerospace technic and technology, n.º 1 (26 de febrero de 2021): 20–30. http://dx.doi.org/10.32620/aktt.2021.1.03.
Texto completoLe, Van Bang y Dieter Rautenbach. "Integral mixed unit interval graphs". Discrete Applied Mathematics 161, n.º 7-8 (mayo de 2013): 1028–36. http://dx.doi.org/10.1016/j.dam.2012.09.013.
Texto completoJinjiang, Yuan y Zhou Sanming. "Optimal labelling of unit interval graphs". Applied Mathematics 10, n.º 3 (septiembre de 1995): 337–44. http://dx.doi.org/10.1007/bf02662875.
Texto completoMarx, Dániel. "Precoloring extension on unit interval graphs". Discrete Applied Mathematics 154, n.º 6 (abril de 2006): 995–1002. http://dx.doi.org/10.1016/j.dam.2005.10.008.
Texto completoLin, Min Chih, Francisco J. Soulignac y Jayme L. Szwarcfiter. "Short Models for Unit Interval Graphs". Electronic Notes in Discrete Mathematics 35 (diciembre de 2009): 247–55. http://dx.doi.org/10.1016/j.endm.2009.11.041.
Texto completoTesis sobre el tema "Unit multiple interval graphs"
Ardevol, martinez Virginia. "Structural and algorithmic aspects of (multiple) interval graphs". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD028.
Texto completoMultiple interval graphs are a well-known generalization of interval graphs, where each vertex of a graph is represented by a d-interval (the union of d intervals) for some natural number d > 1, and there exists an edge between two vertices if and only if their corresponding d-intervals intersect. In particular, a d-interval graph is unit if all the intervals on the representation have unit length. In this thesis, we study unit d-interval graphs from a structural and an algorithmic perspective. In the first part, we tryto generalize Roberts characterization of unit interval graphs, which states that a graph is unit interval if and only if it is interval and it does not contain the complete bipartite graph K1,3 as an induced subgraph. Then, we move on to studythe complexity of recognizing unit multiple interval graphs. We prove that given a graph G it is NP-hard to determine whether G is a unit d-interval graph, and then extend this hardness result to other subclasses of unit d-interval graphs. Inthe last part of this manuscript, we focus on the PIG-completion problem, where given an interval graph G, we are asked to find the minimum number of edges that we need to add to G so that it becomes a proper interval graph. We obtain apolynomial algorithm when G contains a vertex that is adjacent to every other vertex of the graph, and an XP algorithm parameterized by a structural property of the graph
Vestin, Albin y Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms". Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Texto completoTu, Yuan-Lung y 塗元龍. "A Study on Unit Interval Graphs". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/76002582966141739137.
Texto completo輔仁大學
數學系碩士班
101
The purpose of this thesis is to study some characterizations of unit interval graphs and an algorithm that are used to recognize whethere a given graph is a unit interval graph or not. The former is based on the book ”Introduction to graph theory” written by D. B. West; and the latter is based on the paper ”A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs” by D. G. Corneil.
Williams, Aaron Michael. "Shift gray codes". Thesis, 2009. http://hdl.handle.net/1828/1966.
Texto completoLibros sobre el tema "Unit multiple interval graphs"
Wijdicks, Eelco F. M. y Sarah L. Clark. Neurocritical Care Pharmacotherapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190684747.001.0001.
Texto completoCapítulos de libros sobre el tema "Unit multiple interval graphs"
Le, Van Bang y Dieter Rautenbach. "Integral Mixed Unit Interval Graphs". En Lecture Notes in Computer Science, 495–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32241-9_42.
Texto completoJoos, Felix. "A Characterization of Mixed Unit Interval Graphs". En Graph-Theoretic Concepts in Computer Science, 324–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12340-0_27.
Texto completoJiang, Minghui y Yong Zhang. "Parameterized Complexity in Multiple-Interval Graphs: Domination". En Parameterized and Exact Computation, 27–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28050-4_3.
Texto completoTalon, Alexandre y Jan Kratochvil. "Completion of the Mixed Unit Interval Graphs Hierarchy". En Lecture Notes in Computer Science, 284–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17142-5_25.
Texto completoAlam, M. J., S. G. Kobourov, S. Pupyrev y J. Toeniskoetter. "Weak Unit Disk and Interval Representation of Graphs". En Graph-Theoretic Concepts in Computer Science, 237–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53174-7_17.
Texto completoCao, Yixin. "Recognizing (Unit) Interval Graphs by Zigzag Graph Searches". En Symposium on Simplicity in Algorithms (SOSA), 92–106. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021. http://dx.doi.org/10.1137/1.9781611976496.11.
Texto completoKlavík, Pavel, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell y Tomáš Vyskočil. "Extending Partial Representations of Proper and Unit Interval Graphs". En Algorithm Theory – SWAT 2014, 253–64. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08404-6_22.
Texto completoJiang, Minghui y Yong Zhang. "Parameterized Complexity in Multiple-Interval Graphs: Partition, Separation, Irredundancy". En Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22685-4_6.
Texto completoFrancis, Mathew C., Daniel Gonçalves y Pascal Ochem. "The Maximum Clique Problem in Multiple Interval Graphs (Extended Abstract)". En Graph-Theoretic Concepts in Computer Science, 57–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34611-8_9.
Texto completoZhou, Yunhong. "Improved Multi-unit Auction Clearing Algorithms with Interval (Multiple-Choice) Knapsack Problems". En Algorithms and Computation, 494–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11940128_50.
Texto completoActas de conferencias sobre el tema "Unit multiple interval graphs"
Sampaio Jr., Moysés S., Fabiano S. Oliveira y Jayme L. Szwarcfiter. "Sobre Finura Própria de Grafos". En III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3165.
Texto completoEisenstat, David y Philip N. Klein. "Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs". En the 45th annual ACM symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2488608.2488702.
Texto completoSun, M., Z. X. Yang, N. Guo y R. J. Jardine. "Three-Dimensional DEM Simulation of Plugging Behaviour of Small-Diameter Open-Ended Model Piles Penetrating Into Sand". En Innovative Geotechnologies for Energy Transition. Society for Underwater Technology, 2023. http://dx.doi.org/10.3723/joia5398.
Texto completoCampanari, Stefano, Luca Boncompagni y Ennio Macchi. "Microturbines and Trigeneration: Optimization Strategies and Multiple Engine Configuration Effects". En ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30417.
Texto completoPatrão, Caroline, Luis Kowada, Diane Castonguay, André Ribeiro y Celina Figueiredo. "Some exact values for the diameter in Cayley graph Hl,p". En IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6395.
Texto completoMellal, I., V. Rasouli, A. Dehdouh, A. Letrache, C. Abdelhamid, M. L. Malki y O. Bakelli. "Formation Evaluation Challenges of Tight and Shale Reservoirs. A Case Study of the Bakken Petroleum System". En 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0894.
Texto completoZeng, Qingna, Donghui Wang, Fenggang Zang, Yixiong Zhang, Bihao Wang y Zhihao Yuan. "Disorders in Fluid Filled Pipeline Structure With Elastic Helmholtz Resonators". En 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93421.
Texto completoBartkowiak, Tomasz. "Characterization of 3D Surface Texture Directionality Using Multi-Scale Curvature Tensor Analysis". En ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71609.
Texto completoEnikov, Eniko T., Péter P. Polyvás, Gholam Peyman y Sean Mccafferty. "Tactile Eye Pressure Measurement Through the Eyelid". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50875.
Texto completoMatzenauer, Mônica, Renata Reiser y Helida Santos. "An approach for consensual analysis on Typical Hesitant Fuzzy Sets via extended aggregations and fuzzy implications based on admissible orders". En Workshop-Escola de Informática Teórica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/weit.2021.18937.
Texto completo