Literatura académica sobre el tema "Uncertain imputation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Uncertain imputation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Uncertain imputation"
G.V., Suresh y Srinivasa Reddy E.V. "Uncertain Data Analysis with Regularized XGBoost". Webology 19, n.º 1 (20 de enero de 2022): 3722–40. http://dx.doi.org/10.14704/web/v19i1/web19245.
Texto completoWang, Jianwei, Ying Zhang, Kai Wang, Xuemin Lin y Wenjie Zhang. "Missing Data Imputation with Uncertainty-Driven Network". Proceedings of the ACM on Management of Data 2, n.º 3 (29 de mayo de 2024): 1–25. http://dx.doi.org/10.1145/3654920.
Texto completoElimam, Rayane, Nicolas Sutton-Charani, Stéphane Perrey y Jacky Montmain. "Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction". PLOS Digital Health 1, n.º 10 (25 de octubre de 2022): e0000115. http://dx.doi.org/10.1371/journal.pdig.0000115.
Texto completoLiang, Pei, Junhua Hu, Yongmei Liu y Xiaohong Chen. "Public resources allocation using an uncertain cooperative game among vulnerable groups". Kybernetes 48, n.º 8 (2 de septiembre de 2019): 1606–25. http://dx.doi.org/10.1108/k-03-2018-0146.
Texto completoBleidorn, Michel Trarbach, Wanderson de Paula Pinto, Isamara Maria Schmidt, Antonio Sergio Ferreira Mendonça y José Antonio Tosta dos Reis. "Methodological approaches for imputing missing data into monthly flows series". Ambiente e Agua - An Interdisciplinary Journal of Applied Science 17, n.º 2 (5 de abril de 2022): 1–27. http://dx.doi.org/10.4136/ambi-agua.2795.
Texto completoGromova, Ekaterina, Anastasiya Malakhova y Arsen Palestini. "Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration". Mathematics 6, n.º 9 (11 de septiembre de 2018): 165. http://dx.doi.org/10.3390/math6090165.
Texto completoLee, Jung Yeon, Myeong-Kyu Kim y Wonkuk Kim. "Robust Linear Trend Test for Low-Coverage Next-Generation Sequence Data Controlling for Covariates". Mathematics 8, n.º 2 (8 de febrero de 2020): 217. http://dx.doi.org/10.3390/math8020217.
Texto completoGriffin, James M., Jino Mathew, Antal Gasparics, Gábor Vértesy, Inge Uytdenhouwen, Rachid Chaouadi y Michael E. Fitzpatrick. "Machine-Learning Approach to Determine Surface Quality on a Reactor Pressure Vessel (RPV) Steel". Applied Sciences 12, n.º 8 (7 de abril de 2022): 3721. http://dx.doi.org/10.3390/app12083721.
Texto completoFLÅM, S. D. y Y. M. ERMOLIEV. "Investment, uncertainty, and production games". Environment and Development Economics 14, n.º 1 (febrero de 2009): 51–66. http://dx.doi.org/10.1017/s1355770x08004579.
Texto completoLe, H., S. Batterman, K. Dombrowski, R. Wahl, J. Wirth, E. Wasilevich y M. Depa. "A Comparison of Multiple Imputation and Optimal Estimation for Missing and Uncertain Urban Air Toxics Data". Epidemiology 17, Suppl (noviembre de 2006): S242. http://dx.doi.org/10.1097/00001648-200611001-00624.
Texto completoTesis sobre el tema "Uncertain imputation"
Elimam, Rayane. "Apprentissage automatique pour la prédiction de performances : du sport à la santé". Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Texto completoNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Bodine, Andrew James. "The Effect of Item Parameter Uncertainty on Test Reliability". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316705.
Texto completoHuang, Shiping. "Exploratory visualization of data with variable quality". Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-01115-225546/.
Texto completoLibros sobre el tema "Uncertain imputation"
Analysis of Integrated Data. Taylor & Francis Group, 2019.
Buscar texto completoChambers, Raymond L. y Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Buscar texto completoChambers, Raymond L. y Lichun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2021.
Buscar texto completoChambers, Raymond L. y Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Uncertain imputation"
Little, Roderick J. A. y Donald B. Rubin. "Estimation of Imputation Uncertainty". En Statistical Analysis with Missing Data, 75–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119013563.ch5.
Texto completoRanvier, Thomas, Haytham Elghazel, Emmanuel Coquery y Khalid Benabdeslem. "Accounting for Imputation Uncertainty During Neural Network Training". En Big Data Analytics and Knowledge Discovery, 265–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39831-5_24.
Texto completoShi, Xingjie, Can Yang y Jin Liu. "Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies". En Methods in Molecular Biology, 93–103. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0947-7_7.
Texto completoErdogan Erten, Gamze, Camilla Zacche da Silva y Jeff Boisvert. "Decorrelation and Imputation Methods for Multivariate Modeling". En Applied Spatiotemporal Data Analytics and Machine Learning [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115069.
Texto completoLajeunesse, Marc J. "Recovering Missing or Partial Data from Studies: a Survey of Conversions and Imputations for Meta-analysis". En Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691137285.003.0013.
Texto completoActas de conferencias sobre el tema "Uncertain imputation"
Mai, Lihao, Haoran Li y Yang Weng. "Data Imputation with Uncertainty Using Stochastic Physics-Informed Learning". En 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688419.
Texto completoZhang, Shunyang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang y Jianxin Wang. "SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation". En Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/283.
Texto completoAzarkhail, M. y P. Woytowitz. "Uncertainty management in model-based imputation for missing data". En 2013 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2013. http://dx.doi.org/10.1109/rams.2013.6517697.
Texto completoZhao, Qilong, Yifei Zhang, Mengdan Zhu, Siyi Gu, Yuyang Gao, Xiaofeng Yang y Liang Zhao. "DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation". En KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6335–43. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3637528.3671641.
Texto completoJun, Eunji, Ahmad Wisnu Mulyadi y Heung-Il Suk. "Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction". En 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852132.
Texto completoSaeidi, Rahim y Paavo Alku. "Accounting for uncertainty of i-vectors in speaker recognition using uncertainty propagation and modified imputation". En Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-703.
Texto completoHwang, Sunghyun y Dong-Kyu Chae. "An Uncertainty-Aware Imputation Framework for Alleviating the Sparsity Problem in Collaborative Filtering". En CIKM '22: The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511808.3557236.
Texto completoAndrews, Mark, Gavin Jones, Brian Leyde, Lie Xiong, Max Xu y Peter Chien. "A Statistical Imputation Method for Handling Missing Values in Generalized Polynomial Chaos Expansions". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91035.
Texto completoMoreira, Rafael Peralta, Thiago da Silva Piedade y Marcelo Victor Tomaz De Matos. "Credibility Assessment of Annular Casing Cement for P&A Campaigns: A Case Study in Campos Basin Offshore Brazil". En Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32625-ms.
Texto completoWang, Zepu, Dingyi Zhuang, Yankai Li, Jinhua Zhao, Peng Sun, Shenhao Wang y Yulin Hu. "ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-Temporal Graph Attention and Bidirectional Recurrent United Neural Networks". En 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023. http://dx.doi.org/10.1109/itsc57777.2023.10422526.
Texto completo