Artículos de revistas sobre el tema "Two-layers neural networks"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Two-layers neural networks".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wei, Chih-Chiang. "Comparison of River Basin Water Level Forecasting Methods: Sequential Neural Networks and Multiple-Input Functional Neural Networks". Remote Sensing 12, n.º 24 (20 de diciembre de 2020): 4172. http://dx.doi.org/10.3390/rs12244172.
Texto completoYin, Chun Hua, Jia Wei Chen y Lei Chen. "Weight to Vision Neural Network Information Processing Influence Research". Advanced Materials Research 605-607 (diciembre de 2012): 2131–36. http://dx.doi.org/10.4028/www.scientific.net/amr.605-607.2131.
Texto completoCarpenter, William C. y Margery E. Hoffman. "Guidelines for the selection of network architecture". Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11, n.º 5 (noviembre de 1997): 395–408. http://dx.doi.org/10.1017/s0890060400003322.
Texto completoBaptista, Marcia, Helmut Prendinger y Elsa Henriques. "Prognostics in Aeronautics with Deep Recurrent Neural Networks". PHM Society European Conference 5, n.º 1 (22 de julio de 2020): 11. http://dx.doi.org/10.36001/phme.2020.v5i1.1230.
Texto completoPAUGAM-MOISY, HÉLÈNE. "HOW TO MAKE GOOD USE OF MULTILAYER NEURAL NETWORKS". Journal of Biological Systems 03, n.º 04 (diciembre de 1995): 1177–91. http://dx.doi.org/10.1142/s0218339095001064.
Texto completoVetrov, Igor A. y Vladislav V. Podtopelny. "Features of building neural networks taking into account the specifics of their training to solve the tasks of searching for network attacks". Proceedings of Tomsk State University of Control Systems and Radioelectronics 26, n.º 2 (2023): 42–50. http://dx.doi.org/10.21293/1818-0442-2023-26-2-42-50.
Texto completoPetzka, Henning, Martin Trimmel y Cristian Sminchisescu. "Notes on the Symmetries of 2-Layer ReLU-Networks". Proceedings of the Northern Lights Deep Learning Workshop 1 (6 de febrero de 2020): 6. http://dx.doi.org/10.7557/18.5150.
Texto completoLamy, Lucas y Paulo Henrique Siqueira. "The Null Layer: increasing convolutional neural network efficiency". Caderno Pedagógico 22, n.º 6 (4 de abril de 2025): e15344. https://doi.org/10.54033/cadpedv22n6-050.
Texto completoShpinareva, Irina M., Anastasia A. Yakushina, Lyudmila A. Voloshchuk y Nikolay D. Rudnichenko. "Detection and classification of network attacks using the deep neural network cascade". Herald of Advanced Information Technology 4, n.º 3 (15 de octubre de 2021): 244–54. http://dx.doi.org/10.15276/hait.03.2021.4.
Texto completoChen, Jingfeng. "Spam mail classification using back propagation neural networks". Applied and Computational Engineering 5, n.º 1 (14 de junio de 2023): 438–49. http://dx.doi.org/10.54254/2755-2721/5/20230617.
Texto completoHuang, Hong-Hua, Jian-Fei Luo, Feng Gan y Philip K. Hopke. "Two Revised Deep Neural Networks and Their Applications in Quantitative Analysis Based on Near-Infrared Spectroscopy". Applied Sciences 13, n.º 14 (23 de julio de 2023): 8494. http://dx.doi.org/10.3390/app13148494.
Texto completoKhodnevych, Yaroslav V. y Dmytro V. Stefanyshyn. "Do we need a more sophisticated multilayer artificial neural network to compute roughness coefficient?" Environmental safety and natural resources 48, n.º 4 (26 de diciembre de 2023): 170–82. http://dx.doi.org/10.32347/2411-4049.2023.4.170-182.
Texto completoMezher, Liqaa Saadi. "Design and implementation hamming neural network with VHDL". Indonesian Journal of Electrical Engineering and Computer Science 19, n.º 3 (1 de septiembre de 2020): 1469. http://dx.doi.org/10.11591/ijeecs.v19.i3.pp1469-1479.
Texto completoHayati, Mohsen y Kaveh Darabi. "Modeling and Simulation of Turbogenerator Using Computational Intelligence". Applied Mechanics and Materials 110-116 (octubre de 2011): 5211–15. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5211.
Texto completoYang, Linrang. "Predicting consumer acceptance of automobiles based on deep learning and traditional machine learning algorithms". Applied and Computational Engineering 27, n.º 1 (11 de diciembre de 2023): 30–37. http://dx.doi.org/10.54254/2755-2721/27/20230119.
Texto completoYang, Linrang. "Predicting consumer acceptance of automobiles based on deep learning and traditional machine learning algorithms". Applied and Computational Engineering 27, n.º 9 (11 de diciembre de 2023): 30–37. http://dx.doi.org/10.54254/2755-2721/27/ojs/20230119.
Texto completoFirsov, Nikita, Evgeny Myasnikov, Valeriy Lobanov, Roman Khabibullin, Nikolay Kazanskiy, Svetlana Khonina, Muhammad A. Butt y Artem Nikonorov. "HyperKAN: Kolmogorov–Arnold Networks Make Hyperspectral Image Classifiers Smarter". Sensors 24, n.º 23 (30 de noviembre de 2024): 7683. https://doi.org/10.3390/s24237683.
Texto completoOH, SUNG-KWUN, DONG-WON KIM y WITOLD PEDRYCZ. "HYBRID FUZZY POLYNOMIAL NEURAL NETWORKS". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, n.º 03 (junio de 2002): 257–80. http://dx.doi.org/10.1142/s0218488502001478.
Texto completoYildirim, Sahin, Asli Durmusoglu, Caglar Sevim, Mehmet Safa Bingol y Menderes Kalkat. "Design of neural predictors for predicting and analysing COVID-19 cases in different regions". Neural Network World 32, n.º 5 (2022): 233–51. http://dx.doi.org/10.14311/nnw.2022.32.014.
Texto completoMorozov, A. Yu, D. L. Reviznikov y K. K. Abgaryan. "Issues of implementing neural network algorithms on memristor crossbars". Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 22, n.º 4 (4 de febrero de 2020): 272–78. http://dx.doi.org/10.17073/1609-3577-2019-4-272-278.
Texto completoHao, Yaobin y Fangying Song. "Fourier Neural Operator Networks for Solving Reaction–Diffusion Equations". Fluids 9, n.º 11 (6 de noviembre de 2024): 258. http://dx.doi.org/10.3390/fluids9110258.
Texto completoMoon, Jihoon, Sungwoo Park, Seungmin Rho y Eenjun Hwang. "A comparative analysis of artificial neural network architectures for building energy consumption forecasting". International Journal of Distributed Sensor Networks 15, n.º 9 (septiembre de 2019): 155014771987761. http://dx.doi.org/10.1177/1550147719877616.
Texto completoJayaprakash, T., V. Jyoshita, E. Mallesh, Malleswari Neelam, T. Manikanta y sankaran ramesh kumar. "Face Mask Detection Using Convolutional Neural Networks". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de mayo de 2024): 3541–46. http://dx.doi.org/10.22214/ijraset.2024.61608.
Texto completoLitavrin, Andrey V. y Tatyana V. Moiseenkova. "About One Groupoid Associated with the Composition of Multilayer Feedforward Neural Networks". Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 26, n.º 2 (30 de junio de 2024): 111–22. http://dx.doi.org/10.15507/2079-6900.26.202402.111-122.
Texto completoStrijhak, Sergei, Daniil Ryazanov, Konstantin Koshelev y Aleksandr Ivanov. "Neural Network Prediction for Ice Shapes on Airfoils Using iceFoam Simulations". Aerospace 9, n.º 2 (12 de febrero de 2022): 96. http://dx.doi.org/10.3390/aerospace9020096.
Texto completoMatondo-Mvula, Nadine y Khaled Elleithy. "Breast Cancer Detection with Quanvolutional Neural Networks". Entropy 26, n.º 8 (26 de julio de 2024): 630. http://dx.doi.org/10.3390/e26080630.
Texto completoBelorutsky, R. Yu y S. V. Zhitnik. "SPEECH RECOGNITION BASED ON CONVOLUTION NEURAL NETWORKS". Issues of radio electronics, n.º 4 (10 de mayo de 2019): 47–52. http://dx.doi.org/10.21778/2218-5453-2019-4-47-52.
Texto completoTanabe, Kazutoshi, Tadao Tamura y Hiroyuki Uesaka. "Neural Network System for the Identification of Infrared Spectra". Applied Spectroscopy 46, n.º 5 (mayo de 1992): 807–10. http://dx.doi.org/10.1366/0003702924124619.
Texto completoGeva, Shlomo y Joaquin Sitte. "An Exponential Response Neural Net". Neural Computation 3, n.º 4 (diciembre de 1991): 623–32. http://dx.doi.org/10.1162/neco.1991.3.4.623.
Texto completoTrejo-Alonso, Josué, Carlos Fuentes, Carlos Chávez, Antonio Quevedo, Alfonso Gutierrez-Lopez y Brandon González-Correa. "Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks". Water 13, n.º 5 (5 de marzo de 2021): 705. http://dx.doi.org/10.3390/w13050705.
Texto completoXu, Zhengzheng y Junhua Gu. "Research on traffic flow prediction method based on adaptive multi-channel graph convolutional neural networks". Advances in Engineering Innovation 7, n.º 1 (25 de abril de 2024): 41–47. http://dx.doi.org/10.54254/2977-3903/7/2024066.
Texto completoJiao, Libin, Rongfang Bie, Hao Wu, Yu Wei, Jixin Ma, Anton Umek y Anton Kos. "Golf swing classification with multiple deep convolutional neural networks". International Journal of Distributed Sensor Networks 14, n.º 10 (octubre de 2018): 155014771880218. http://dx.doi.org/10.1177/1550147718802186.
Texto completoDíaz-Vico, David, Jesús Prada, Adil Omari y José Dorronsoro. "Deep support vector neural networks". Integrated Computer-Aided Engineering 27, n.º 4 (11 de septiembre de 2020): 389–402. http://dx.doi.org/10.3233/ica-200635.
Texto completoWang, Jinfeng y Xuegang Wang. "Two new methods for facial expression recognition using Convolutional Neural Networks". Journal of Physics: Conference Series 2031, n.º 1 (1 de septiembre de 2021): 012023. http://dx.doi.org/10.1088/1742-6596/2031/1/012023.
Texto completoFathima, Sheeba. "Music Genre Classification using Deep Learning". International Journal for Research in Applied Science and Engineering Technology 9, n.º VII (10 de julio de 2021): 66–71. http://dx.doi.org/10.22214/ijraset.2021.36087.
Texto completoZakić, Milorad y Goran Kvaščev. "Procena mesta nastanka kvara na električnom vodu primenom veštačkih neuralnih mreža". Energija, ekonomija, ekologija XXIV, n.º 4 (diciembre de 2022): 68–74. http://dx.doi.org/10.46793/eee22-4.68z.
Texto completoWang, Lingfeng. "Forecast Model of TV Show Rating Based on Convolutional Neural Network". Complexity 2021 (24 de febrero de 2021): 1–10. http://dx.doi.org/10.1155/2021/6694538.
Texto completoTzougas, George y Konstantin Kutzkov. "Enhancing Logistic Regression Using Neural Networks for Classification in Actuarial Learning". Algorithms 16, n.º 2 (9 de febrero de 2023): 99. http://dx.doi.org/10.3390/a16020099.
Texto completoBukhari, Syeda Sana, Waqar Ahmad, Khurram Khan Jadoon y Shahab U. Ansari. "Artificial Neural Network-Based Color Contrast Recommendation System". MATEC Web of Conferences 398 (2024): 01029. http://dx.doi.org/10.1051/matecconf/202439801029.
Texto completoSOHN, ANDREW y JEAN-LUC GAUDIOT. "REPRESENTING AND PROCESSING PRODUCTION SYSTEMS IN CONNECTIONIST ARCHITECTURES". International Journal of Pattern Recognition and Artificial Intelligence 04, n.º 02 (junio de 1990): 199–214. http://dx.doi.org/10.1142/s0218001490000149.
Texto completoYu, Haichao, Haoxiang Li, Gang Hua, Gao Huang y Humphrey Shi. "Boosted Dynamic Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junio de 2023): 10989–97. http://dx.doi.org/10.1609/aaai.v37i9.26302.
Texto completoCurteanu, Silvia. "Direct and inverse neural network modeling in free radical polymerization". Open Chemistry 2, n.º 1 (1 de marzo de 2004): 113–40. http://dx.doi.org/10.2478/bf02476187.
Texto completoPecev, Predrag y Milos Rackovic. "LTR-MDTS structure - a structure for multiple dependent time series prediction". Computer Science and Information Systems 14, n.º 2 (2017): 467–90. http://dx.doi.org/10.2298/csis150815004p.
Texto completoIto, Yoshifusa. "Approximation Capability of Layered Neural Networks with Sigmoid Units on Two Layers". Neural Computation 6, n.º 6 (noviembre de 1994): 1233–43. http://dx.doi.org/10.1162/neco.1994.6.6.1233.
Texto completoBORSCHBACH, M., W. M. LIPPE y S. NIENDIEK. "A TOOL FOR ANALYZING MAGNETOENCEPHALOGRAPHY-DATA BASED ON DIFFERENT ARTIFICIAL NEURAL NETWORKS". International Journal of Software Engineering and Knowledge Engineering 13, n.º 06 (diciembre de 2003): 609–26. http://dx.doi.org/10.1142/s0218194003001457.
Texto completoDu, Lei, Haifeng Song, Yingying Xu y Songsong Dai. "An Architecture as an Alternative to Gradient Boosted Decision Trees for Multiple Machine Learning Tasks". Electronics 13, n.º 12 (12 de junio de 2024): 2291. http://dx.doi.org/10.3390/electronics13122291.
Texto completoKonarev, D. I. y A. A. Gulamov. "Synthesis of Neural Network Architecture for Recognition of Sea-Going Ship Images". Proceedings of the Southwest State University 24, n.º 1 (23 de junio de 2020): 130–43. http://dx.doi.org/10.21869/2223-1560-2020-24-1-130-143.
Texto completoBan, Jung-Chao y Chih-Hung Chang. "On the Structure of Multilayer Cellular Neural Networks: Complexity between Two Layers". Complex Systems 24, n.º 4 (15 de diciembre de 2015): 311–54. http://dx.doi.org/10.25088/complexsystems.24.4.311.
Texto completoMcEneaney, John E. "Neural Networks for Readability Analysis". Journal of Educational Computing Research 10, n.º 1 (enero de 1994): 79–93. http://dx.doi.org/10.2190/2ln8-8chq-64mu-7d9c.
Texto completoKHASHMAN, ADNAN. "A NEURAL NETWORK MODEL FOR CREDIT RISK EVALUATION". International Journal of Neural Systems 19, n.º 04 (agosto de 2009): 285–94. http://dx.doi.org/10.1142/s0129065709002014.
Texto completo