Literatura académica sobre el tema "Turbulent shear layers"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Turbulent shear layers".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Turbulent shear layers"
Johnson, Blair A. y Edwin A. Cowen. "Turbulent boundary layers absent mean shear". Journal of Fluid Mechanics 835 (27 de noviembre de 2017): 217–51. http://dx.doi.org/10.1017/jfm.2017.742.
Texto completoThole, K. A. y D. G. Bogard. "High Freestream Turbulence Effects on Turbulent Boundary Layers". Journal of Fluids Engineering 118, n.º 2 (1 de junio de 1996): 276–84. http://dx.doi.org/10.1115/1.2817374.
Texto completoFontaine, Ryan A., Gregory S. Elliott, Joanna M. Austin y Jonathan B. Freund. "Very near-nozzle shear-layer turbulence and jet noise". Journal of Fluid Mechanics 770 (27 de marzo de 2015): 27–51. http://dx.doi.org/10.1017/jfm.2015.119.
Texto completoPei, Binbin, FangBo Li, Zhengyuan Luo, Liang Zhao y Bofeng Bai. "Dynamics of mixing flow with double-layer density stratification: Enstrophy and vortical structures". Physics of Fluids 34, n.º 10 (octubre de 2022): 104107. http://dx.doi.org/10.1063/5.0121554.
Texto completoSleath, J. F. A. "Coastal Bottom Boundary Layers". Applied Mechanics Reviews 48, n.º 9 (1 de septiembre de 1995): 589–600. http://dx.doi.org/10.1115/1.3023147.
Texto completoWatanabe, Tomoaki, Carlos B. da Silva y Koji Nagata. "Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence". Journal of Fluid Mechanics 875 (18 de julio de 2019): 321–44. http://dx.doi.org/10.1017/jfm.2019.462.
Texto completoMuppidi, Suman y Krishnan Mahesh. "Direct numerical simulations of roughness-induced transition in supersonic boundary layers". Journal of Fluid Mechanics 693 (6 de enero de 2012): 28–56. http://dx.doi.org/10.1017/jfm.2011.417.
Texto completoGan, X., M. Kilic y J. M. Owen. "Flow Between Contrarotating Disks". Journal of Turbomachinery 117, n.º 2 (1 de abril de 1995): 298–305. http://dx.doi.org/10.1115/1.2835659.
Texto completoBrown, Garry L. y Anatol Roshko. "Turbulent shear layers and wakes". Journal of Turbulence 13 (enero de 2012): N51. http://dx.doi.org/10.1080/14685248.2012.723805.
Texto completoCARSTENSEN, STEFAN, B. MUTLU SUMER y JØRGEN FREDSØE. "Coherent structures in wave boundary layers. Part 1. Oscillatory motion". Journal of Fluid Mechanics 646 (8 de marzo de 2010): 169–206. http://dx.doi.org/10.1017/s0022112009992825.
Texto completoTesis sobre el tema "Turbulent shear layers"
Abu-Hijleh, Bassam Abdel-Kareem A.-R. "Structure of supersonic turbulent reattaching shear layers /". The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676261012304.
Texto completoLuo, Jian Yang. "Calculation of turbulent shear layers over highly curved surfaces". Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/11500.
Texto completoSreedhar, Madhu K. "Large eddy simulation of turbulent vortices and mixing layers". Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-163324/.
Texto completoWang, Kan. "Computational investigation of aero-optical distortions by turbulent boundary layers and separated shear layers". Thesis, University of Notre Dame, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3578995.
Texto completoAero-optical distortions are detrimental to airborne optical systems. To study distortion mechanisms, compressible large-eddy simulations are performed for a Mach 0.5 turbulent boundary layer and a separated shear layer over a cylindrical turret with and without passive control in the upstream boundary layer. Optical analysis is carried out using ray tracing based on the computed density field and Gladstone-Dale relation.
In the flat-plate boundary layer, the effects of aperture size, Reynolds number, small-scale turbulence, different flow regions and beam elevation angle are examined, and the underlying flow physics is analyzed. Three momemtum-thickness Reynolds numbers, Re&thetas; = 875, 1770 and 3550, are considered. It is found that the level of optical distortions decreases with increasing Reynolds number within the Reynolds number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analyzed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton's linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.
The second case studied involves a separated shear layer over a cylindrical turret with a flat window, with inflow from a flat-plate boundary layer with and without passive control devices. The flow and optical results show reasonable agreement with experimental data for the baseline case without control. Aperture size effect, frequency spectra of OPD and two-point spatial correlations of OPD are investigated. The similarities and differences of distortion characteristics compared to those induced by turbulent boundary layers are discussed. The distortions by a separated shear layer are much larger in magnitude and spatially less homogeneous than those induced by an attached boundary layer. It is found that pressure fluctuations are significant and play a dominant role in inducing density fluctuations and associated optical distortions in a separated shear layer, in contrast to the dominant role of temperature fluctuations in a turbulent boundary layer. When passive control is applied using a row of thin and tall pins in the upstream boundary layer, the numerical results confirm key experimental findings. The flow above the optical window is characterized by two distinct shear layers, whose combined effect leads to a significant reduction of density fluctuation magnitude in the main shear layer and associated optical distortions compared to the uncontrolled flow with a single strong shear layer.
Hipp, Hans Christoph 1959. "Numerical investigation of mode interaction in free shear layers". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276871.
Texto completoSchmidt, Martin Arnold. "Microsensors for the measurement of shear forces in turbulent boundary layers". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14781.
Texto completoCiochetto, David S. "Analysis of Three Dimensional Turbulent Shear Flow Experiments with Respect to Algebraic Modeling Parameters". Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36808.
Texto completoMaster of Science
McGinnis, David C. "Aero Optic Characterization of Highly Turbulent Free Shear Layers Over a Backward Facing Step". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367928372.
Texto completoMartin, Martin Laura. "Numerical study of sound scattering by isolated elliptic vortices and turbulent jet shear layers". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0025.
Texto completoThis study is consecrated to the scattering of acoustic waves by isolated vortices and turbulent jet shear layers. When the acoustic waves pass through a volume of turbulence, the fluctuations in the turbulence change the propagation direction of the waves. In addition, if the turbulence evolves in time, there is also a change in the sound spectral content, causing spectral broadening. In order to better understand these phenomena, a series of numerical analyses have been carried out. For this purpose, a code provided by Siemens has been used where the Linearised Euler Equations are solved by the Discontinuous Galerkin method. It simulates the acoustic wave propagation over a base flow defined by the user. To take into account the spectral broadening, the code has been modified to be able to interpolate time-dependent external data in time and space onto the base flow. The interpolation has been tested by different convergence studies of the pressure field scattered by a 2-dimensional mixing layer. Other features have been also implemented to cope with the numerical instability waves caused by the inhomogeneity of the base flow. Initially, the scattering of acoustic waves caused by an isolated Kirchhoff elliptic vortex is investigated. When the vortex is fixed in space, the study focuses on the effects of the ellipticity, the orientation of the vortex regarding the direction of propagation of the incident acoustic wave, the tangential velocity of the vortex and its size regarding the acoustic waves. The scattering has been investigated also when the vortex is convected. Special attention has been devoted to its ellipticity and the velocity convection. The results show that the ellipticity and especially the orientation of the vortex play a key role in the scattering. Finally, the study of the scattering of sound by turbulent jet shear layers is conducted, where the acoustic source is located at the jet axis. For that, the data interpolated in the base flow of the DGM code belong to an external database of round jets simulated by LES. These jets have Mach numbers varying between 0.3 and 1.3, and their temperature is 1, 1.5 or 2.25 times the ambience temperature. These parameters modify the properties of the turbulent fluctuations. Therefore, the spectral content of these fluctuations is compared between the jets. After that, the pressure fields obtained with mean base flows and turbulent base flows, and the difference between them are presented. Their directivities are also discussed, as well as the spectra of the acoustic field. The spectra are characterized by a central tone at the source frequency and two lateral lobes. They are symmetric for high Mach numbers. The position of the lateral lobes shifts closer to the central tone and their levels increase with the jet temperature for jets with constant Mach number, which can be explained by the changes undergone by the turbulence fluctuations
Miller, Ronald J. "A Study of Passive Scalar Mixing in Turbulent Boundary Layers using Multipoint Correlators". Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7574.
Texto completoLibros sobre el tema "Turbulent shear layers"
Smits, Alexander J. Turbulent shear layers in supersonic flow. 2a ed. New York: Springer, 2011.
Buscar texto completoJean-Paul, Dussauge, ed. Turbulent shear layers in supersonic flow. 2a ed. New York: Springer, 2006.
Buscar texto completoJean-Paul, Dussauge, ed. Turbulent shear layers in supersonic flow. Woodbury, N.Y: American Institute of Physics, 1996.
Buscar texto completoPapamoschou, Dimitri. Structure of the compressible turbulent shear layer. Washington, D. C: American Institute of Aeronautics and Astronautics, 1989.
Buscar texto completoY, Chen J., Limley J. L y Lewis Research Center. Institute for Computational Mechanics in Propulsion., eds. Second order modeling of boundary-free turbulent shear flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1991.
Buscar texto completoShau, Y. R. Experimental study of spreading rate enhancement of high Mach number turbulent shear layers. Washington, D. C: American Institute of Aeronautics and Astronautics, 1989.
Buscar texto completoCenter, Ames Research, ed. Improved two-equation k - [omega] turbulence models for aerodynamic flows. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Buscar texto completoCenter, Ames Research, ed. Improved two-equation k - [omega] turbulence models for aerodynamic flows. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Buscar texto completoAdair, Desmond. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Buscar texto completoBrown, Douglas L. Computation of turbulent boundary layers employing the defect wall-function method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Turbulent shear layers"
Gibson, M. M. "Boundary Layers". En Turbulent Shear Flows 4, 219–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_17.
Texto completoCastro, I. P., M. Dianat y A. Haque. "Shear Layers Bounding Separated Regions". En Turbulent Shear Flows 6, 299–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_25.
Texto completoLee, C., R. W. Metcalfe y F. Hussain. "Large Scale Structures in Reacting Mixing Layers". En Turbulent Shear Flows 7, 331–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_24.
Texto completoComte, P., M. Lesieur, H. Laroche y X. Normand. "Numerical Simulations of Turbulent Plane Shear Layers". En Turbulent Shear Flows 6, 360–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_29.
Texto completoSpalart, Philippe R. y Anthony Leonard. "Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers". En Turbulent Shear Flows 5, 234–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71435-1_20.
Texto completoYu, K., E. Gutmark y K. C. Schadow. "On Coherent Vortex Formation in Axisymmetric Compressible Shear Layers". En Turbulent Shear Flows 9, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78823-9_13.
Texto completoPlesniak, Michael W. y James P. Johnston. "Reynolds Stress Evolution in Curved Two-Stream Turbulent Mixing Layers". En Turbulent Shear Flows 7, 239–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_18.
Texto completoEgerer, Christian, Stefan Hickel, Steffen Schmidt y Nikolaus A. Adams. "LES of Turbulent Cavitating Shear Layers". En High Performance Computing in Science and Engineering ‘13, 349–59. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02165-2_24.
Texto completoJohnson, A. E. y P. E. Hancock. "The Effect of Extra Strain Rates of Streamline Curvature and Divergence on Mixing Layers". En Turbulent Shear Flows 7, 253–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_19.
Texto completoCoustols, E., C. Tenaud y J. Cousteix. "Manipulation of Turbulent Boundary Layers in Zero-Pressure Gradient Flows: Detailed experiments and Modelling". En Turbulent Shear Flows 6, 164–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_16.
Texto completoActas de conferencias sobre el tema "Turbulent shear layers"
JOHANSEN, J. y C. SMITH. "The effects of cylindrical surface modifications on turbulent boundary layers". En Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-547.
Texto completoKyrazis, Demos T. "Optical degradation by turbulent free-shear layers". En SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, editado por Soyoung S. Cha y James D. Trolinger. SPIE, 1993. http://dx.doi.org/10.1117/12.163700.
Texto completoKumar, Vedant, Dipendra Gupta, Gregory P. Bewley y Johan Larsson. "Three-Dimensional Effects in Turbulent Shear Layers". En AIAA AVIATION FORUM AND ASCEND 2024. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-4372.
Texto completoROOS, F. y J. KEGELMAN. "Control of coherent structures in reattaching laminar and turbulent shear layers". En Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-554.
Texto completoSchlatter, Phillipp, Ramis Orlu, Qiang Li, Geert Brethouwer, Arne V. Johansson, P. Henrik Alfredsson y Dan S. Henningson. "PROGRESS IN SIMULATIONS OF TURBULENT BOUNDARY LAYERS". En Seventh International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2011. http://dx.doi.org/10.1615/tsfp7.1790.
Texto completoZheng, Shaokai y Ellen K. Longmire. "PERTURBING SPANWISE MODES IN TURBULENT BOUNDARY LAYERS". En Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.1340.
Texto completoSMITS, A. "The control of turbulent boundary layers by the application of extrastrain rates". En Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-538.
Texto completoROSHKO, A. y F. ROBERTS. "Effects of periodic forcing on mixing in turbulent shear layers and wakes". En Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-570.
Texto completoLAI, H. y M. RAJU. "CFD validation of subsonic turbulent planar shear layers". En 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1773.
Texto completoBURR, R. y J. DUTTON. "Numerical modeling of compressible reacting turbulent shear layers". En 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1463.
Texto completoInformes sobre el tema "Turbulent shear layers"
Jumper, Eric J. Adaptive Optics for Turbulent Shear Layers. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2006. http://dx.doi.org/10.21236/ada469562.
Texto completoNaguib, Hassan M., Candace E. Wark, Ron J. Adrian, A. M. Naguib y S. Kwan. Investigation of Turbulent Boundary Layers Subjected to Internally or Externally Imposed Time-Dependent Transverse Shear. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1997. http://dx.doi.org/10.21236/ada335110.
Texto completoGlegg, Stewart A. Distorted Turbulent Flow in a Shear Layer. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2014. http://dx.doi.org/10.21236/ada600333.
Texto completoBegeman, Carolyn. Boundary layer turbulence below ice shelves in the shear-dominated regime. Office of Scientific and Technical Information (OSTI), abril de 2022. http://dx.doi.org/10.2172/1862788.
Texto completoKeith, William L. Spectral Measurements of the Wall Shear Stress and Wall Pressure in a Turbulent Boundary Layer: Theory. Fort Belvoir, VA: Defense Technical Information Center, junio de 1990. http://dx.doi.org/10.21236/ada224070.
Texto completoKamada, R. F. Amending the W* Velocity Scale for Surface Layer, Entrainment Zone, and Baroclinic Shear in Mixed Forced/Free Turbulent Convection. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1992. http://dx.doi.org/10.21236/ada250389.
Texto completoPeloquin, Mark S. Direct Measurement of the Mode O Turbulent Boundary Layer Wall Pressure and Wall Shear Stress Spectra Using Air-Backed and Oil-Filled Multichannel Wavenumber Filters. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1999. http://dx.doi.org/10.21236/ada371294.
Texto completoMerritt, Elizabeth, Forrest Doss, Eric Loomis, Kirk Flippo y John Kline. Examining the evolution towards turbulence through spatio-temporal analysis of multi-dimensional structures formed by instability growth along a counter propagating shear layer. Office of Scientific and Technical Information (OSTI), julio de 2014. http://dx.doi.org/10.2172/1148305.
Texto completo