Índice
Literatura académica sobre el tema "Triplet aryl cations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Triplet aryl cations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Triplet aryl cations"
Kemp, Terence J. "The Aryl Cation – the Trapping and Characterisation of a Hyper-Reactive Species". Progress in Reaction Kinetics and Mechanism 28, n.º 1 (marzo de 2003): 11–34. http://dx.doi.org/10.3184/007967403103165431.
Texto completoFasani, Elissa, Angelo Albini, Mariella Mella, Michela Rampi y Federico Barberis Negra. "Light and drugs: the photochemistry of fluoroquinolone antibiotics". International Journal of Photoenergy 1, n.º 1 (1999): 7–11. http://dx.doi.org/10.1155/s1110662x99000021.
Texto completoLaali, Kenneth K., Golam Rasul, G. K. Surya Prakash y George A. Olah. "DFT Study of Substituted and Benzannelated Aryl Cations: Substituent Dependency of Singlet/Triplet Ratio1a". Journal of Organic Chemistry 67, n.º 9 (mayo de 2002): 2913–18. http://dx.doi.org/10.1021/jo020084p.
Texto completoBondarchuk, Sergey V., Boris F. Minaev y Alexander Yu Fesak. "Theoretical study of the triplet state aryl cations recombination: A possible route to unusually stable doubly charged biphenyl cations". International Journal of Quantum Chemistry 113, n.º 24 (4 de julio de 2013): 2580–88. http://dx.doi.org/10.1002/qua.24509.
Texto completoDulov, Dmitry A., Alexey V. Bogdanov, Sergey G. Dorofeev y Tatiana V. Magdesieva. "N,N′-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones". Molecules 28, n.º 1 (27 de diciembre de 2022): 221. http://dx.doi.org/10.3390/molecules28010221.
Texto completoMilanesi, Silvia, Maurizio Fagnoni y Angelo Albini. "(Sensitized) Photolysis of Diazonium Salts as a Mild General Method for the Generation of Aryl Cations. Chemoselectivity of the Singlet and Triplet 4-Substituted Phenyl Cations". Journal of Organic Chemistry 70, n.º 2 (enero de 2005): 603–10. http://dx.doi.org/10.1021/jo048413w.
Texto completoWinter, Arthur H., Daniel E. Falvey, Christopher J. Cramer y Benjamin F. Gherman. "Benzylic Cations with Triplet Ground States: Computational Studies of Aryl Carbenium Ions, Silylenium Ions, Nitrenium Ions, and Oxenium Ions Substituted with Meta π Donors". Journal of the American Chemical Society 129, n.º 33 (agosto de 2007): 10113–19. http://dx.doi.org/10.1021/ja070143m.
Texto completoChen, Kai, Man Sing Cheung, Zhenyang Lin y Pengfei Li. "Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions". Organic Chemistry Frontiers 3, n.º 7 (2016): 875–79. http://dx.doi.org/10.1039/c6qo00109b.
Texto completoFleming, S. A., L. Renault, E. C. Grundy y J. A. Pincock. "The photochemistry of ring-substituted cinnamyl acetates". Canadian Journal of Chemistry 84, n.º 9 (1 de septiembre de 2006): 1146–54. http://dx.doi.org/10.1139/v06-140.
Texto completoAmbroz, Hanna B., Terence J. Kemp, Nelson M. Pinhal, Grazyna K. Przybytniak y J. Barrie Raynor. "A powder endor study of a σ, π-triplet aryl cation 3Ar+". Chemical Physics Letters 160, n.º 4 (agosto de 1989): 396–400. http://dx.doi.org/10.1016/0009-2614(89)87617-1.
Texto completoTesis sobre el tema "Triplet aryl cations"
Powderly, Marian. "Νew Cyclic Scaffοlds under Μicrοflοw and Ρressure Cοnditiοns". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR091.
Texto completoPolycyclic systems are the base structure to many pharmaceutical compounds with varying biological properties. The most straightforward reaction pathways to achieve these structures largely revolve around cyclisation, cycloaddition and, in some cases, annulation. There are different methods (high-pressure chemistry, thermochemistry, sonochemistry, microwave chemistry, electrochemistry, and photochemistry) to activate the reactions to obtain these compounds with each its advantages and drawbacks. Furthermore, a recurring need in organic chemistry is the production of complex compounds using methods with high atom-efficiency, reagentless and low cost. In this context, cyclisation activated by UV-light is a simple method to obtain polycyclic compounds. Hence, in the first two chapters of this thesis, we examine the reactivity of different triplet aryl cations generated from (ortho-iodobenzyl)-β-tetralones, (ortho-iodobenzyl)indanones and tetrahydroquinolines. The results showed that products with either a phenanthrene and phenanthridine skeleton can be obtained in atom-efficient and reagentless conditions. High-pressure is another activation method explored in the last two chapters. Its application to a Normal-Electron-Demand Diels-Alder reaction with various 5-nitroquinoline derivatives and electron-rich dienes, proved to be very efficient at giving 3D polycyclic products. Furthermore, the combination of high-pressure and a cyclic diene demonstrated that the diastereoselectivity of the Diels-Alder reaction can be controlled. A (4+2)/(3+2) domino reaction was also explored under hyperbaric conditions. The results from this multicomponent reaction showed that complex nitrosoaketal products could be achieved with ease and high atom-efficiency