Artículos de revistas sobre el tema "Triazole and tetrazole"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Triazole and tetrazole.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Triazole and tetrazole".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Suresh, Lingala, P. Sagar Vijay Kumar, T. Vinodkumar y G. V. P. Chandramouli. "Heterogeneous recyclable nano-CeO2 catalyst: efficient and eco-friendly synthesis of novel fused triazolo and tetrazolo pyrimidine derivatives in aqueous medium". RSC Advances 6, n.º 73 (2016): 68788–97. http://dx.doi.org/10.1039/c6ra16307f.

Texto completo
Resumen
A ceria nanocatalyst was used for the one-pot, multicomponent condensation reaction of benzoylacetonitrile, aromatic aldehydes and 5-amino-triazole/tetrazole proceeding via C–C and C–N bond formation to deliver triazolo/tetrazolo[1,5-a]pyrimidines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Chandrasekhar, Attoor, Venkatachalam Ramkumar y Sethuraman Sankararaman. "Palladium catalyzed carbonylative annulation of the C(sp2)–H bond of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-triazol-3-amines to quinazolinones". Organic & Biomolecular Chemistry 16, n.º 44 (2018): 8629–38. http://dx.doi.org/10.1039/c8ob02516a.

Texto completo
Resumen
Pd(ii) catalyzed direct C–H carbonylative annulation of N,1-diaryl-1H-tetrazol-5-amines and N,4-diaryl-4H-1,2,4-triazol-3-amines gave the corresponding triazole and tetrazole fused quinazolinones in good yields.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lysenko, Andrey B. "The heterobifunctional ligand 5-[4-(1,2,4-triazol-4-yl)phenyl]-1H-tetrazole and its role in the construction of a CdIImetal–organic chain structure". Acta Crystallographica Section C Crystal Structure Communications 68, n.º 10 (18 de septiembre de 2012): m291—m294. http://dx.doi.org/10.1107/s0108270112038498.

Texto completo
Resumen
5-[4-(1,2,4-Triazol-4-yl)phenyl]-1H-tetrazole, C9H7N7, (I), an asymmetric heterobifunctional organic ligand containing triazole (tr) and tetrazole (tz) termini linked directly through a 1,4-phenylene spacer, crystallizes in the polar space groupPc. The heterocyclic functions, serving as single hydrogen-bond donor (tz) or acceptor (tr) units, afford hydrogen-bonded zigzag chains with no crystallographic centre of inversion. In the structure ofcatena-poly[[diaquacadmium(II)]bis{μ2-5-[4-(1,2,4-triazol-4-yl)phenyl]tetrazol-1-ido-κ2N1:N1′}], [Cd(C9H6N7)2(H2O)2]n, (II), the CdIIdication resides on a centre of inversion in an octahedral {N4O2} environment. In the equatorial plane, the CdIIpolyhedron is built up from four N atoms of two kinds, namely oftrans-coordinating tr and tz fragments [Cd—N = 2.2926 (17) and 2.3603 (18) Å], and the coordinating aqua ligands occupy the two apical sites. The metal centres are separated at a distance of 11.1006 (7) Å by means of the double-bridging tetrazolate anion,L−, forming a chain structure. The water ligands and tz fragments interact with one another, like a double hydrogen-bond donor–acceptor synthon, leading to a hydrogen-bonded three-dimensional array.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pavlov, Dmitry, Taisiya Sukhikh, Evgeny Filatov y Andrei Potapov. "Facile Synthesis of 3-(Azol-1-yl)-1-adamantanecarboxylic Acids—New Bifunctional Angle-Shaped Building Blocks for Coordination Polymers". Molecules 24, n.º 15 (26 de julio de 2019): 2717. http://dx.doi.org/10.3390/molecules24152717.

Texto completo
Resumen
For the first time, orthogonally substituted azole-carboxylate adamantane ligands were synthesized and used for preparation of coordination polymers. The angle-shaped ligands were prepared by the reaction of 1-adamantanecarboxylic acid and azoles (1H-1,2,4-triazole, 3-methyl-1H-1,2,4-triazole, 3,5-dimethyl-1H-1,2,4-triazole, 1H-tetrazole, 5-methyl-1H-tetrazole) in concentrated sulfuric acid. Variation of the solvent and substituents in azole rings allowed to prepare both 1D and 2D copper(II) and nickel(II) coordination polymers, [Cu2(trzadc)4(H2O)0.7]∙DMF∙0.3H2O, [Cu(trzadc)2(MeOH)]∙MeOH, [Ni(trzadc)2(MeOH)2] and [Cu2(mtrzadc)3(MeOH)]+NO3– (trzadc-3-(1,2,4-triazol-1-yl)-adamantane-1-carboxylic acid; mtrzadc-3-(3-methyl-1,2,4-triazol-1-yl)-adamantane-1-carboxylic acid) which were structurally characterized by single crystal X-ray diffraction. Complex [Cu(trzadc)2(MeOH)]∙MeOH was shown to act as a catalyst in the Chan-Evans-Lam arylation reaction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ciesielski, Witold y Anna Krenc. "Potentiometric Titration of Triazolethiols and Tetrazolethiols with Iodine in Alkaline Medium". Collection of Czechoslovak Chemical Communications 67, n.º 8 (2002): 1193–99. http://dx.doi.org/10.1135/cccc20021193.

Texto completo
Resumen
The iodimetric determination of triazolethiols and tetrazolethiols in alkaline medium is presented. The volumetric titration with potentiometric end-point detection was applied. The range of determination, in which the error is lower than 1%, is 20-2 000 μmol for 1H-1,2,4-triazole-3-thiol (1), 25-1 000 μmol for 3-phenyl-1H-1,2,4-triazole-5-thiol (2), 25-500 μmol for 4-methyl-5-(trifluoromethyl)-4H-1,2,4-triazole-3-thiol (3), 50-500 μmol for 3-amino-1H-1,2,4-triazole-5-thiol (4), 10-1 000 μmol for sodium (5-mercapto-1H-tetrazol-1-yl)acetate (5), 125-500 μmol for 1-phenyl-1H-tetrazole-5-thiol (6) and 50-1 000 μmol for 1-(4-hydroxyphenyl)-1H-tetrazole-5-thiol (7). The relative standard deviation for all determinations was below 1%. The shape of potentiometric titration curve of 6 and 7 is noteworthy at higher concentrations of sodium hydroxide and depends on the type of the indicator electrode (platinum, gold). An introduction of iodine results in a strong potential drop. Some systems do not follow the Nernst equation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Dioukhane, Khadim, Younas Aouine, Salaheddine Boukhssas, Asmae Nakkabi, Hassane Faraj y Anouar Alami. "Synthesis and Characterization of a Novel Biheterocyclic -amino Acid Precursor of the Triazole-Tetrazole Type, via the Copper (I) Catalyzed Alkyne-Azide Cycloaddition Reaction (CuAAC)". European Journal of Advanced Chemistry Research 2, n.º 2 (26 de marzo de 2021): 7–15. http://dx.doi.org/10.24018/ejchem.2021.2.2.53.

Texto completo
Resumen
In this paper, we describe the regioselective synthesis of a novel tri-heterocyclic compound, a biheterocyclic amino acid precursor, derived from both triazole and tetrazole. The key step of our synthesis approach was the Huigsen 1,3-dipolar cycloaddition reaction, catalyzed by the copper (I) formed in situ by reduction of Cu(II) salts (CuSO4), 5H2O) by sodium ascorbate, and using as dipole the oxazoline azide derivative 4-(azidomethyl)-4-ethyl-2-phenyl-4,5-dihydrooxazole (4) and as dipolarophile 5-(4-methoxyphenyl)-2-(prop-2-yn-1-yl)-2H-tetrazole (3). The Cu(I) catalysis allowed us to carry out the cycloaddition at room temperature during a reaction time of only 8 hours and also to selectively obtain the 1,4-regioisomer; one of the two possible isomers, with a yield of 90% after chromatography on a silica gel column (ether/hexane: 1/2), and recrystallization in an ether/acetone mixture. The desired compound, 4-ethyl-4-((4-((5-(4-methoxyphenyl)-2H-tetrazol-2-yl)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2-phenyl-4,5-dihydrooxazole (5) was analyzed by 1D magnetic resonance spectroscopy (1H, 13C), and characterized physico-chemically by mass spectrometry and elemental analysis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Gang, Chunlin He, Haixiang Gao, Gregory H. Imler, Damon A. Parrish y Jean'ne M. Shreeve. "Improving the density and properties of nitrogen-rich scaffolds by the introduction of a C–NO2 group". New Journal of Chemistry 42, n.º 19 (2018): 16162–66. http://dx.doi.org/10.1039/c8nj03472a.

Texto completo
Resumen
5,5′-(Nitromethylene)bis(1H-tetrazole) and 5,5′-(2-(nitromethyl)-2H-1,2,3-triazole-4,5-diyl)bis(1H-tetrazole) were synthesized by introducing a C–NO2 group to increase the density and detonation performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tiwari, Vibha, Jacob T. Bingham, Shubham Vyas y Anand Singh. "Intermolecular fluoroamination of allenes towards substituted vinyl fluorides". Organic & Biomolecular Chemistry 18, n.º 44 (2020): 9044–49. http://dx.doi.org/10.1039/d0ob01697g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tang, Yongxing, Chunlin He, Gregory H. Imler, Damon A. Parrish y Jean'ne M. Shreeve. "Design and synthesis of N-methylene-C linked tetrazole and nitramino-1,2,4-triazole: an approach to promising energetic materials". Journal of Materials Chemistry A 4, n.º 36 (2016): 13923–29. http://dx.doi.org/10.1039/c6ta05057c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hamdan, Fatima, Fatemeh Tahoori y Saeed Balalaie. "Synthesis of novel cyclopeptides containing heterocyclic skeletons". RSC Advances 8, n.º 59 (2018): 33893–926. http://dx.doi.org/10.1039/c8ra03899f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Yao, Zi-Xuan, Jing-Zhe Li, Hao-Hai Wang, Xun Cheng, Lin-Lin Hou, Dong-Nan Yu, Delun Chen, Wen-Yan Dan y Kuan-Guan Liu. "Construction of eight mixed-valence pentanuclear CuI4CuII clusters using ligands with inhomogeneous electron density distribution: synthesis, characterization and photothermal properties". Dalton Transactions 51, n.º 15 (2022): 6053–60. http://dx.doi.org/10.1039/d2dt00658h.

Texto completo
Resumen
Eight mixed-valence pentanuclear CuI4CuII clusters constructed by 1,2,3-triazole or tetrazole and different mono-phosphine ligands have been fabricated. They exhibit excellent photothermal conversion performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Cai, Jiawei, Zhixin Li, Yanxuan Qiu, Zhijian OuYang, Wenning Lin, Liu Yang, Weijin Feng, Xinwei Yu y Wen Dong. "The syntheses, structures and azo–hydrazone tautomeric studies of three triazole/tetrazole azo dyes". New Journal of Chemistry 40, n.º 11 (2016): 9370–79. http://dx.doi.org/10.1039/c5nj02539g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Luo, Yiming, Wanwan Zheng, Xuanjun Wang y Fei Shen. "Nitrification Progress of Nitrogen-Rich Heterocyclic Energetic Compounds: A Review". Molecules 27, n.º 5 (22 de febrero de 2022): 1465. http://dx.doi.org/10.3390/molecules27051465.

Texto completo
Resumen
As a momentous energetic group, a nitro group widely exists in high-energy-density materials (HEDMs), such as trinitrotoluene (TNT), 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), etc. The nitro group has a significant effect on improving the oxygen balance and detonation performances of energetic materials (EMs). Moreover, the nitro group is a strong electron-withdrawing group, and it can increase the acidity of the acidic hydrogen-containing nitrogen-rich energetic compounds to facilitate the construction of energetic ionic salts. Thus, it is possible to design nitro-nitrogen-rich energetic compounds with adjustable properties. In this paper, the nitration methods of azoles, including imidazole, pyrazole, triazole, tetrazole, and oxadiazole, as well as azines, including pyrazine, pyridazine, triazine, and tetrazine, have been concluded. Furthermore, the prospect of the future development of nitrogen-rich heterocyclic energetic compounds has been stated, so as to provide references for researchers who are engaged in the synthesis of EMs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Farah Smaysem y Ahmed Salim. "Synthesis and Characterization of Some Heterocyclic Compounds and Evaluation of Antibacterial Activity". International Journal of Research in Pharmaceutical Sciences 11, SPL4 (21 de diciembre de 2020): 2068–78. http://dx.doi.org/10.26452/ijrps.v11ispl4.4421.

Texto completo
Resumen
In this study, heterocyclic compounds with two nitrogen atoms are prepared by reaction of 2-aminobenzimidazole with formic acid to get amide derivatives (A), reacts with phenylhydrazine to get phenyl hydrazone derivatives (B), reacts with ethyl chloroacetate to obtain ethyl acetate derivatives (C). The derivative (D) obtains on heating in a basic medium. The (B) reacts with 2-chloroacetyl chloride to give derivatives (E). A number of Schiff bases are prepared (F, I) from reacting 2-aminobenzimidazole with benzaldehyde derivatives. The(F) reacts with propargyl bromide to give propargyl bromide derivatives (G). The cyclization with 4-nitrophenyl azide leads to obtain triazole compound (H). The compound (I) reacts with ethyl chloroacetate to give ethyl acetate derivatives (J), reacts with hydrazine to give N-amide hydrazine derivatives (K). The cyclization give rises to 1,3,4-oxadiazole derivatives (L). The compound (I) reacts with sodium azide to obtain tetrazole derivatives (M). Synthesizing of Triazine, Oxadiazole, Triazole, Tetrazole via cyclization of the Schiff base derivatives with ethyl chloroacetate and chloro acetyl chloride, benzoic acid, 4-nitrophenyl azide, sodium azide and phenyl azide are possible respectively. The FT-IR, 13C-NMR and 1H-NMR spectral data give good evidence for the formation of the compounds. Some prepared compounds exhibit antibacterial properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Senthil Kumar, Kuppusamy, Bernhard Schäfer, Sergei Lebedkin, Lydia Karmazin, Manfred M. Kappes y Mario Ruben. "Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands". Dalton Transactions 44, n.º 35 (2015): 15611–19. http://dx.doi.org/10.1039/c5dt02186c.

Texto completo
Resumen
We report the synthesis and efficient photoluminescence of charge-neutral lanthanide (Ln = Eu3+ and Tb3+) complexes based on pyrazole–pyridine–tetrazole and pyrazole–pyridine–triazole ligands.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ranjith Kumar, Gadi, Yalla Kiran Kumar, Ruchir Kant y Maddi Sridhar Reddy. "Synthesis of benzofuranyl and indolyl methyl azides by tandem silver-catalyzed cyclization and azidation". Organic & Biomolecular Chemistry 14, n.º 17 (2016): 4077–88. http://dx.doi.org/10.1039/c6ob00191b.

Texto completo
Resumen
A tandem Ag-catalyzed 5-exo-dig cyclization and catalyst free γ-azidation for benzofuranyl/indolyl methyl azides is presented. The adducts are further transformed to useful triazole-, tetrazole-, amide-, amine-, and pyrido-derivatives.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Фролова Ю. С. y Каплаушенко А. Г. "ДОСЛІДЖЕННЯ ГОСТРОЇ ТОКСИЧНОСТІ ПОХІДНИХ 1,2,4-ТРІАЗОЛУ, ЩО МІСТЯТЬ В СВОЄМУ СКЛАДІ ЯДРО 1Н-ТЕТРАЗОЛУ". International Academy Journal Web of Scholar, n.º 6(36) (30 de junio de 2019): 23–30. http://dx.doi.org/10.31435/rsglobal_wos/30062019/6552.

Texto completo
Resumen
The design of new drugs is a rather complex and multi-stage process. The modeling and creation of new biologically active compounds are one of the stages of this operation. One of the important stages of preclinical trials is the study of acute toxicity of newly synthesized compounds. Great interest in this branch is nitrogen-containing heterocycles, namely 1,2,4-triazole and their derivatives.Therefore, the purpose of our work is to study acute toxicity among new derivatives of 5-(1H-tetrazole-1-yl)-4-R-3-thio(amino)-1,2,4-triazole. The study of acute toxicity was carried out by the method of V. B. Prozorovsky on the white nonlinear rats.As a result of the experiments, acute toxicity of the 41 synthesized compounds was determined. The value of the LD50 of new derivatives of 5-(1H-tetrazole-1-yl)-4-R-3-thio(amino)-1,2,4-triazole is in the range of 357-1060 mg/kg, and according to the classification of Sidorov I. K. belong to IV and V toxicity classes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Wang, Qian, Yanli Shao y Ming Lu. "Amino-tetrazole functionalized fused triazolo-triazine and tetrazolo-triazine energetic materials". Chemical Communications 55, n.º 43 (2019): 6062–65. http://dx.doi.org/10.1039/c9cc01777a.

Texto completo
Resumen
In this study, two insensitive energetic compounds using fused triazolo-triazine and tetrazolo-triazine as the framework, one amino and one tetrazole as functional groups, were prepared through a two-step reaction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Safin, Damir A., Antoine P. Railliet, Koen Robeyns, Mariusz P. Mitoraj, Piotr Kubisiak, Filip Sagan y Yann Garcia. "Complexes and salts of the nitrogen-rich triazole–tetrazole hybrid ligand with alkali and alkaline earth metal cations: experimental and theoretical findings". New Journal of Chemistry 41, n.º 14 (2017): 6210–18. http://dx.doi.org/10.1039/c7nj01391d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Frolova, Yuliia, Andrii Kaplaushenko, Sameliuk Yurii, Daria Romanina y Liubov Morozova. "nvestigation of the antimicrobial and antifungal activities of some 1,2,4-triazole derivatives". Česká a slovenská farmacie 71, n.º 3 (2022): 149–58. http://dx.doi.org/10.5817/csf2022-4-149.

Texto completo
Resumen
This article presents the results of the study of the antimicrobial and antifungal properties among 1,2,4-triazole derivatives synthesized at the Department of Physical and Colloidal Chemistry of the Zaporizhzhia State Medical University. Previous studies have established the antimicrobial and antifungal activity of 1,2,4-triazole derivatives. Therefore, it was reasonable to investigate highly effective substances with antimicrobial and antifungal properties among synthesized compounds. In the first stage of our research, acute toxicity prediction was performed. The antimicrobial and antifungal properties were carried out by the method of “serial dilutions” on a liquid nutrient. Forty-seven compounds of the different classes were studied for these types of activities. According to our research, derivatives of 3-amino-1,2,4-triazole showed better performance than 3-thio-1,2.4-triazoles for Staphylococcus aureus and Candida albicans. 5-(1Н-tetrazole-1-іl)methyl-4Н- -1,2,4-triazole-3-yl-1-(5-nitrofuran-2-yl)methanimin (11.6) was showed the greatest antimicrobial and antifungal activity. Deeper research for compound 11.6 was done by diffusion in agar (method of “wells”). Studies have shown that molecule 11.6 showed antimicrobial and antifungal action to the studied test strains at a concentration of 2 μg/ml. Hence, this compound can be developed as a helpful therapeutic agent after establishing its safety pharmacology and toxicity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sun, Han-Xu, Jie Zhou, Zhen Zhang, Mei He, Lian-Cheng He, Lin Du, Ming-Jin Xie y Qi-Hua Zhao. "Anion-controlled Zn(ii) coordination polymers with 1-(tetrazo-5-yl)-3-(triazo-1-yl) benzene as an assembling ligand: synthesis, characterization, and efficient detection of tryptophan in water". Dalton Transactions 50, n.º 48 (2021): 18044–52. http://dx.doi.org/10.1039/d1dt03045k.

Texto completo
Resumen
The triazole/tetrazole N-donor ligand of Httb is rarely studied in the construction of CPs. A controlling effect of anions on supramolecular architectures has been observed. CP 2 has been proved to be the best tryptophan sensor.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Song, Wu-Hui, Ming-Ming Liu, Dong-Wei Zhong, Ye-lin Zhu, Mike Bosscher, Lu Zhou, De-Yong Ye y Zheng-Hong Yuan. "Tetrazole and triazole as bioisosteres of carboxylic acid: Discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents". Bioorganic & Medicinal Chemistry Letters 23, n.º 16 (agosto de 2013): 4528–31. http://dx.doi.org/10.1016/j.bmcl.2013.06.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kizhnyaev, V. N., F. A. Pokatilov y L. I. Vereshchagin. "Carbochain polymers with oxadiazole, triazole, and tetrazole cycles". Polymer Science Series C 50, n.º 1 (septiembre de 2008): 1–21. http://dx.doi.org/10.1134/s1811238208010013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Begtrup, Mikael. "ChemInform Abstract: Diazole, Triazole, and Tetrazole N-Oxides". ChemInform 43, n.º 45 (11 de octubre de 2012): no. http://dx.doi.org/10.1002/chin.201245258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Fei, Teng, Yao Du y Siping Pang. "Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino)dinitromethyl derivatives of triazole and tetrazole". RSC Advances 8, n.º 19 (2018): 10215–27. http://dx.doi.org/10.1039/c8ra00699g.

Texto completo
Resumen
Twelve series of –CH(NO2)2, –CF(NO2)2and –C(NF2)(NO2)2substituted derivatives of triazole and tetrazole were designed, some physicochemical or detonation properties of them were calculated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tinant, Bernard, Anil D. Naik, Mathieu Monaux y Yann Garcia. "Engineering metal-organic frameworks with a triazole-tetrazole ligand". Acta Crystallographica Section A Foundations of Crystallography 66, a1 (29 de agosto de 2010): s246—s247. http://dx.doi.org/10.1107/s0108767310094407.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Maddila, Suresh, Ramakanth Pagadala y Sreekanth B. Jonnalagadda. "Synthesis and Insecticidal Activity of Tetrazole-Linked Triazole Derivatives". Journal of Heterocyclic Chemistry 52, n.º 2 (26 de mayo de 2014): 487–91. http://dx.doi.org/10.1002/jhet.2078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Rowlett, Roger S., Thomas Klysa y William W. Shiraki. "Synthesis of tetrazole-13C and 1,2,4-triazole-1,2-15N2". Journal of Labelled Compounds and Radiopharmaceuticals 28, n.º 12 (diciembre de 1990): 1437–40. http://dx.doi.org/10.1002/jlcr.2580281212.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sakakibara, Jinsaku, Shin-ichi Nagai, Naoki Kato, Taisei Ueda y Noriichi Oda. "Bridgehead Nitrogen Heterocycles. Synthesis of Methanoazepines Fused with Tetrazole, 1,2,4-Triazole and 1,2,4-Triazine". HETEROCYCLES 24, n.º 4 (1986): 907. http://dx.doi.org/10.3987/r-1986-04-0907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Nevonen, Dustin E., Laura S. Ferch, Victor Y. Chernii, David E. Herbert, Johan van Lierop y Victor N. Nemykin. "X-Ray structures, Mössbauer hyperfine parameters, and molecular orbital descriptions of the phthalocyaninato iron(II) azole complexes". Journal of Porphyrins and Phthalocyanines 24, n.º 05n07 (mayo de 2020): 894–903. http://dx.doi.org/10.1142/s1088424619502043.

Texto completo
Resumen
The electronic structures of a set of PcFe(azole)2 complexes (azole = imidazole, [Formula: see text]-methylimidazole, pyrazole, isoxazole, thiazole, 1,2,4-triazole, 3-amino-1,2,4,-triazole, and 5-amino-1,2,3,4-tetrazole) were examined by Mössbauer spectroscopy and Density Functional Theory (DFT) calculations. In addition, the geometric distortions in these compounds were elucidated by X-ray crystallography for imidazole, pyrazole, and thiazole-containing compounds. Predicted by DFT calculations, Mössbauer hyperfine parameters for all compounds are in reasonable agreement with experimental results, and the influence of the [Formula: see text]-donor and [Formula: see text]-acceptor properties of the axial azoles on the electronic structure of the PcFe(azole)2 complexes is demonstrated by comparison with the reference PcFePy2 compound.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Xiong, Guolin, Zhichao Liu, Qiong Wu, Weihua Zhu y Heming Xiao. "Theoretical study of energetic carbon-oxidized triazole and tetrazole derivatives". Canadian Journal of Chemistry 93, n.º 3 (marzo de 2015): 368–74. http://dx.doi.org/10.1139/cjc-2014-0363.

Texto completo
Resumen
We investigated the heat of formation, density, thermal stability, and detonation properties of a series of carbon-oxidized triazole and tetrazole derivatives substituted by –NH2 and –NO2 groups using density functional theory. It is found that their properties are associated with the numbers of substituents and substitution positions in the parent ring. The results show that the –NO2 group is an effective structural unit for enhancing their detonation performance. It also indicates that the substitution positions play a very important role in increasing the heat of formation values of the derivatives. An analysis of impact sensitivity (h50) indicates that incorporating the –NH2 groups into the parent ring increases their thermal stability. Considering the detonation performance and thermal stability, seven of the designed compounds may be regarded as potential high-energy compounds. These results provide basic information for the molecular design of novel high-energy compounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Vereshchagin, L. I., V. N. Kizhnyaev, O. N. Verkhozina, A. G. Proidakov y A. I. Smirnov. "Synthesis of Polycyclic Functionally-substituted Triazole- and Tetrazole-containing Systems". Russian Journal of Organic Chemistry 40, n.º 8 (agosto de 2004): 1156–61. http://dx.doi.org/10.1023/b:rujo.0000045898.10072.7f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Vereshchagin, L. I., A. V. Petrov, A. G. Proidakov, F. A. Pokatilov, A. I. Smirnov y V. N. Kizhnyaev. "Polynuclear nonfused tetrazole-, 1,3,4-oxadiazole-, and 1,2,3-triazole-containing systems". Russian Journal of Organic Chemistry 42, n.º 6 (junio de 2006): 912–17. http://dx.doi.org/10.1134/s1070428006060170.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Frey, Guido D., Karl Öfele, Herbert G. Krist, Eberhardt Herdtweck y Wolfgang A. Herrmann. "Tetrazole and triazole carbene complexes of group 6 metal carbonyls". Inorganica Chimica Acta 359, n.º 9 (junio de 2006): 2622–34. http://dx.doi.org/10.1016/j.ica.2005.09.049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Kizhnyaev, Valerii N., Tat’yana V. Golobokova, Fedor A. Pokatilov, Leontii I. Vereshchagin y Yakov I. Estrin. "Synthesis of energetic triazole- and tetrazole-containing oligomers and polymers". Chemistry of Heterocyclic Compounds 53, n.º 6-7 (junio de 2017): 682–92. http://dx.doi.org/10.1007/s10593-017-2109-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yadav, Abhishek Kumar, Vikas D. Ghule y Srinivas Dharavath. "Dianionic nitrogen-rich triazole and tetrazole-based energetic salts: synthesis and detonation performance". Materials Chemistry Frontiers 5, n.º 24 (2021): 8352–60. http://dx.doi.org/10.1039/d1qm01365c.

Texto completo
Resumen
To develop explosives with excellent stability, and detonation performance, a series of nitrogen-rich salts were synthesized from 5,5′-methylenebistetrazolate and N,N′-(methylenebis(1H-1,2,4-triazole-3,5-diyl))dinitramide.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Malek, Fouad, Tarik Harit, Mounir Cherfi y Bonglee Kim. "Insights on the Synthesis of N-Heterocycles Containing Macrocycles and Their Complexion and Biological Properties". Molecules 27, n.º 7 (25 de marzo de 2022): 2123. http://dx.doi.org/10.3390/molecules27072123.

Texto completo
Resumen
Macrocyclic chemistry has been extensively developed over the past several decades. In fact, the architecture of new macrocyclic models has undergone exponential growth to offer molecules with specific properties. In this context, an attempt is made in this study to provide an overview of some synthetic methods allowing the elaboration of N-heterocycles containing macrocycles (imidazole, triazole, tetrazole, and pyrazole), as well as their applications in the complexation of metal cations or as pharmacological agents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wang, Xiuli, Xue Bai, Hongyan Lin, Junjun Sun, Guocheng Liu y Xiang Wang. "Novel polyoxometalate-based cobalt complexes based on rigid pyridyl-triazole-tetrazole and pyridyl-bis(triazole) ligands". CrystEngComm 20, n.º 41 (2018): 6438–48. http://dx.doi.org/10.1039/c8ce01158c.

Texto completo
Resumen
Three novel polyoxometalate (POM)-based cobalt complexes have been synthesized and structurally characterized. The adsorption activities for organic dyes and electrochemical properties have been studied in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Schollmeyer, Dieter y Heiner Detert. "3-(4-Hexyloxyphenyl)-1,2,4-triazolo[3,4-b]benzothiazole". Acta Crystallographica Section E Structure Reports Online 70, n.º 3 (5 de febrero de 2014): o247. http://dx.doi.org/10.1107/s1600536814002153.

Texto completo
Resumen
The title compound, C20H21N3OS, was prepared by Huisgen reaction of 5-(4-hexyloxyphenyl)tetrazole and chlorobenzothiazole. The essentially planar benzothiazolotriazole framework [maximum deviation from the mean plane of 0.077 (1) Å for the bridgehead N atom] and the phenyl ring form a dihedral angle of 53.34 (5)°. The hexyloxy chain adopts agauche–all-anti conformation. The intracentroid separation of 3.7258 (8) Å between the triazole and benzene rings is the closest contact between individual molecules in the crystal.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ruma, Yasmeen N., Mikhail V. Keniya, Joel D. A. Tyndall y Brian C. Monk. "Characterisation of Candida parapsilosis CYP51 as a Drug Target Using Saccharomyces cerevisiae as Host". Journal of Fungi 8, n.º 1 (10 de enero de 2022): 69. http://dx.doi.org/10.3390/jof8010069.

Texto completo
Resumen
The fungal cytochrome P450 lanosterol 14α-demethylase (CYP51) is required for the biosynthesis of fungal-specific ergosterol and is the target of azole antifungal drugs. Despite proven success as a clinical target for azole antifungals, there is an urgent need to develop next-generation antifungals that target CYP51 to overcome the resistance of pathogenic fungi to existing azole drugs, toxic adverse reactions and drug interactions due to human drug-metabolizing CYPs. Candida parapsilosis is a readily transmitted opportunistic fungal pathogen that causes candidiasis in health care environments. In this study, we have characterised wild type C. parapsilosis CYP51 and its clinically significant, resistance-causing point mutation Y132F by expressing these enzymes in a Saccharomyces cerevisiae host system. In some cases, the enzymes were co-expressed with their cognate NADPH-cytochrome P450 reductase (CPR). Constitutive expression of CpCYP51 Y132F conferred a 10- to 12-fold resistance to fluconazole and voriconazole, reduced to ~6-fold resistance for the tetrazoles VT-1161 and VT-1129, but did not confer resistance to the long-tailed triazoles. Susceptibilities were unchanged in the case of CpCPR co-expression. Type II binding spectra showed tight triazole and tetrazole binding by affinity-purified recombinant CpCYP51. We report the X-ray crystal structure of ScCYP51 in complex with VT-1129 obtained at a resolution of 2.1 Å. Structural analysis of azole—enzyme interactions and functional studies of recombinant CYP51 from C. parapsilosis have improved understanding of their susceptibility to azole drugs and will help advance structure-directed antifungal discovery.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wang, Shiben, Hui Liu, Xuekun Wang, Kang Lei, Guangyong Li y Zheshan Quan. "Synthesis and Evaluation of Antidepressant Activities of 5-Aryl-4,5-dihydrotetrazolo [1,5-a]thieno[2,3-e]pyridine Derivatives". Molecules 24, n.º 10 (14 de mayo de 2019): 1857. http://dx.doi.org/10.3390/molecules24101857.

Texto completo
Resumen
In this study, we synthetized a series of 5-aryl-4,5-dihydrotetrazolo[1,5-a]thieno[2,3-e]pyridine derivatives containing tetrazole and other heterocycle substituents, i.e., triazole, methyltriazole, and triazolone. The forced swim test (FST) and tail suspension test (TST) were used to evaluate the antidepressant activity of the target compounds. The compound 5-[4-(trifluoromethyl)phenyl]-4,5-dihydrotetrazolo[1,5-a]thieno[2,3-e]pyridine (4i) showed the highest antidepressant activity, with a reduced immobility time of 55.33% when compared with the control group. Using an open-field test, compound 4i was shown to not affect spontaneous activity of mice. The determination of in vivo 5-hydroxytryptamine (5-HT) concentration showed that compound 4i may have an effect in the mouse brain. The biological activities of all synthetized compounds were verified by molecular docking studies. Compound 4i showed significant interactions with residues of the 5-HT1A receptor homology model.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Shin, Jung-Ah, Yeong-Gweon Lim y Kyung-Hee Lee. "Synthesis of Polymers Including Both Triazole and Tetrazole by Click Reaction". Bulletin of the Korean Chemical Society 32, n.º 2 (20 de febrero de 2011): 547–52. http://dx.doi.org/10.5012/bkcs.2011.32.2.547.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Jenkins, Sarah M., Harry J. Wadsworth, Steven Bromidge, Barry S. Orlek, Paul A. Wyman, Graham J. Riley y Julie Hawkins. "Substituent variation in azabicyclic triazole- and tetrazole-based muscarinic receptor ligands". Journal of Medicinal Chemistry 35, n.º 13 (junio de 1992): 2392–406. http://dx.doi.org/10.1021/jm00091a007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Burasov, A. V., T. S. Vakhotina y V. A. Petrosyan. "Indirect Electrochemical N-Dimethoxyphenylation of 3-Nitro-1,2,4-triazole and Tetrazole". Russian Journal of Electrochemistry 41, n.º 8 (agosto de 2005): 903–7. http://dx.doi.org/10.1007/s11175-005-0154-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kato, Yuki, Masayuki Ninomiya, Yuji Yamaguchi y Mamoru Koketsu. "Synthesis of triazole- and tetrazole-xyloside analogues as potent hyaluronidase inhibitors". Medicinal Chemistry Research 24, n.º 3 (8 de agosto de 2014): 1180–88. http://dx.doi.org/10.1007/s00044-014-1203-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Srinivas, Dharavath, Vikas D. Ghule y Krishnamurthi Muralidharan. "Synthesis of nitrogen-rich imidazole, 1,2,4-triazole and tetrazole-based compounds". RSC Advances 4, n.º 14 (2014): 7041. http://dx.doi.org/10.1039/c3ra47227b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Maier, Günther, Jürgen Eckwert, Axel Bothur, Hans Peter Reisenauer y Christiane Schmidt. "Photochemical Fragmentation of Unsubstituted Tetrazole, 1,2,3-Triazole, and 1,2,4-Triazole: First Matrix-Spectroscopic Identification of Nitrilimine HCNNH". Liebigs Annalen 1996, n.º 7 (25 de enero de 2006): 1041–53. http://dx.doi.org/10.1002/jlac.199619960704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Al-Ghorbani, Mohammed, Osama Alharbi, Abdel-Basit Al-Odayni y Naaser A. Y. Abduh. "Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes". Pharmaceuticals 16, n.º 9 (30 de agosto de 2023): 1222. http://dx.doi.org/10.3390/ph16091222.

Texto completo
Resumen
Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff’s bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a–c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a–d and 8a–d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC50 = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC50: 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (−10.9 kcal/mol) and α-amylase (−9.0 kcal/mol) compared to acarbose (−8.6 kcal/mol for α-glycosidase and −6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns).
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

El-Azhary, A. A., H. U. Suter y J. Kubelka. "Experimental and Theoretical Investigation of the Geometry and Vibrational Frequencies of 1,2,3-Triazole, 1,2,4-Triazole, and Tetrazole Anions". Journal of Physical Chemistry A 102, n.º 3 (enero de 1998): 620–29. http://dx.doi.org/10.1021/jp9719568.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

GUO, Yunyun y Zhiwen YE. "Progress in Synthesis of Energetic Ionic Salts of Triazole and Tetrazole Compounds". Acta Agronomica Sinica 30, n.º 5 (2013): 489. http://dx.doi.org/10.3724/sp.j.1095.2013.20261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía