Literatura académica sobre el tema "Transverse knots and links"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Transverse knots and links".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Transverse knots and links"
OGASA, EIJI. "THE INTERSECTION OF SPHERES IN A SPHERE AND A NEW GEOMETRIC MEANING OF THE ARF INVARIANT". Journal of Knot Theory and Its Ramifications 11, n.º 08 (diciembre de 2002): 1211–31. http://dx.doi.org/10.1142/s0218216502002104.
Texto completoDING, FAN y HANSJÖRG GEIGES. "LEGENDRIAN KNOTS AND LINKS CLASSIFIED BY CLASSICAL INVARIANTS". Communications in Contemporary Mathematics 09, n.º 02 (abril de 2007): 135–62. http://dx.doi.org/10.1142/s0219199707002381.
Texto completoChmutov, S., S. Jablan, K. Karvounis y S. Lambropoulou. "On the link invariants from the Yokonuma–Hecke algebras". Journal of Knot Theory and Its Ramifications 25, n.º 09 (agosto de 2016): 1641004. http://dx.doi.org/10.1142/s0218216516410042.
Texto completoVance, Katherine. "Tau invariants for balanced spatial graphs". Journal of Knot Theory and Its Ramifications 29, n.º 09 (agosto de 2020): 2050066. http://dx.doi.org/10.1142/s0218216520500662.
Texto completoBode, B., M. R. Dennis, D. Foster y R. P. King. "Knotted fields and explicit fibrations for lemniscate knots". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, n.º 2202 (junio de 2017): 20160829. http://dx.doi.org/10.1098/rspa.2016.0829.
Texto completoIto, Tetsuya. "Braids, chain of Yang–Baxter like operations, and (transverse) knot invariants". Journal of Knot Theory and Its Ramifications 27, n.º 11 (octubre de 2018): 1843009. http://dx.doi.org/10.1142/s0218216518430095.
Texto completoXie, C., S. Y. Haffert, J. de Boer, M. A. Kenworthy, J. Brinchmann, J. Girard, I. A. G. Snellen y C. U. Keller. "A MUSE view of the asymmetric jet from HD 163296". Astronomy & Astrophysics 650 (junio de 2021): L6. http://dx.doi.org/10.1051/0004-6361/202140602.
Texto completoCoe, Tom, Jim Mackey y Hyde Marine. "Controlling Oil Spills in Fast Currents with the Flow∼Diverter". International Oil Spill Conference Proceedings 2003, n.º 1 (1 de abril de 2003): 833–41. http://dx.doi.org/10.7901/2169-3358-2003-1-833.
Texto completoSebastian, K. L. "Knots and links". Resonance 11, n.º 3 (marzo de 2006): 25–35. http://dx.doi.org/10.1007/bf02835965.
Texto completoRadovic, Ljiljana y Slavik Jablan. "Meander knots and links". Filomat 29, n.º 10 (2015): 2381–92. http://dx.doi.org/10.2298/fil1510381r.
Texto completoTesis sobre el tema "Transverse knots and links"
Tovstopyat-Nelip, Lev Igorevich. "Braids, transverse links and knot Floer homology:". Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108376.
Texto completoContact geometry has played a central role in many recent advances in low-dimensional topology; e.g. in showing that knot Floer homology detects the genus of a knot and whether a knot is fibered. It has also been used to show that the unknot, trefoil, and figure eight knot are determined by their Dehn surgeries. An important problem in 3-dimensional contact geometry is the classification of Legendrian and transverse knots. Such knots come equipped with some classical invariants. New invariants from knot Floer homology have been effective in distinguishing Legendrian and transverse knots with identical classical invariants, a notoriously difficult task. The Giroux correspondence allows contact structures to be studied via purely topological constructs called open book decompositions. Transverse links are then braids about these open books, which in turn may be thought of as mapping tori of diffeomorphisms of compact surfaces with boundary having marked points, which we refer to as pointed monodromies. In the first part of this thesis, we investigate properties of the transverse invariant in knot Floer homology, in particular its behavior for transverse closures of pointed monodromies possessing certain dynamical properties. The binding of an open book sits naturally as a transverse link in the supported contact manifold. We prove that the transverse link invariant in knot Floer homology of the binding union any braid about the open book is non-zero. As an application, we show that any pointed monodromy with fractional Dehn twist coefficient greater than one has non-zero transverse invariant, generalizing a result of Plamenevskaya for braids about the unknot. In the second part of this thesis, we define invariants of Legendrian and transverse links in universally tight lens spaces using grid diagrams, generalizing those defined by Ozsvath, Szabo and Thurston. We show that our invariants are equivalent to those defined by Lisca, Ozsvath, Szabo and Stipsicz for Legendrian and transverse links in arbitrary contact 3-manifolds. Our argument involves considering braids about rational open book decompositions and filtrations on knot Floer complexes
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Wiest, Bertold. "Knots, links, and cubical sets". Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263657.
Texto completoMontemayor, Anthony. "On Nullification of Knots and Links". TopSCHOLAR®, 2012. http://digitalcommons.wku.edu/theses/1158.
Texto completoLipson, Andrew Solomon. "Polynomial invariants of knots and links". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303206.
Texto completoBettersworth, Zachary S. "Nullification of Torus Knots and Links". TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1626.
Texto completoPham, Van Anh. "Loop Numbers of Knots and Links". TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1952.
Texto completoOzawa, Makoto. "Tangle decompositions of knots and links /". Electronic version of summary, 1999. http://www.wul.waseda.ac.jp/gakui/gaiyo/2848.pdf.
Texto completoManfredi, Enrico <1986>. "Knots and links in lens spaces". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6265/1/manfredi_enrico_tesi.pdf.
Texto completoManfredi, Enrico <1986>. "Knots and links in lens spaces". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6265/.
Texto completoTosun, Bulent. "Legendrian and transverse knots and their invariants". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44880.
Texto completoLibros sobre el tema "Transverse knots and links"
Knots and links. Houston, Tex: Publish or Perish, 1990.
Buscar texto completoKnots and links. Providence, R.I: AMS Chelsea Pub., 2003.
Buscar texto completoWiest, Bertold. Knots, links, and cubical sets. [s.l.]: typescript, 1997.
Buscar texto completoAndrás, Stipsicz y Szabó Zoltán 1965-, eds. Grid homology for knots and links. Providence, Rhode Island: American Mathematical Society, 2015.
Buscar texto completoFlapan, Erica, Allison Henrich, Aaron Kaestner y Sam Nelson, eds. Knots, Links, Spatial Graphs, and Algebraic Invariants. Providence, Rhode Island: American Mathematical Society, 2017. http://dx.doi.org/10.1090/conm/689.
Texto completoFiedler, Thomas. Gauss diagram invariants for knots and links. Dordrecht: Kluwer Academic Publishers, 2001.
Buscar texto completoGhrist, Robert W., Philip J. Holmes y Michael C. Sullivan. Knots and Links in Three-Dimensional Flows. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0093387.
Texto completoFiedler, Thomas. Gauss Diagram Invariants for Knots and Links. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9785-2.
Texto completoGhrist, Robert W. Knots and links in three-dimensional flows. Berlin: Springer, 1997.
Buscar texto completoFiedler, Thomas. Gauss Diagram Invariants for Knots and Links. Dordrecht: Springer Netherlands, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Transverse knots and links"
Fomenko, A. T. y S. V. Matveev. "Knots and Links". En Algorithmic and Computer Methods for Three-Manifolds, 179–205. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-0699-5_8.
Texto completoMonastyrsky, Michael. "Knots, Links, and Physics". En Riemann, Topology, and Physics, 167–81. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-0-8176-4779-7_16.
Texto completoKassel, Christian y Vladimir Turaev. "Braids, Knots, and Links". En Graduate Texts in Mathematics, 47–91. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-68548-9_2.
Texto completoÅström, Alexander y Christoffer Åström. "Projections of Knots and Links". En Handbook of the Mathematics of the Arts and Sciences, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70658-0_16-1.
Texto completoKassel, Christian. "Knots, Links, Tangles, and Braids". En Graduate Texts in Mathematics, 241–74. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0783-2_10.
Texto completoAbrosimov, Nikolay y Alexander Mednykh. "Geometry of knots and links". En Topology and Geometry, 433–54. Zuerich, Switzerland: European Mathematical Society Publishing House, 2021. http://dx.doi.org/10.4171/irma/33-1/20.
Texto completoÅström, Alexander y Christoffer Åström. "Projections of Knots and Links". En Handbook of the Mathematics of the Arts and Sciences, 665–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-57072-3_16.
Texto completoMeliani, Z. y O. Hervet. "Knots in Relativistic Transverse Stratified Jets". En Astrophysics and Space Science Proceedings, 79–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14128-8_12.
Texto completoPrzytycki, Józef H. "From Goeritz Matrices to Quasi-alternating Links". En The Mathematics of Knots, 257–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15637-3_9.
Texto completoKindermann, Philipp, Stephen Kobourov, Maarten Löffler, Martin Nöllenburg, André Schulz y Birgit Vogtenhuber. "Lombardi Drawings of Knots and Links". En Lecture Notes in Computer Science, 113–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73915-1_10.
Texto completoActas de conferencias sobre el tema "Transverse knots and links"
Lescop, Christine. "On configuration space integrals for links". En Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2002. http://dx.doi.org/10.2140/gtm.2002.4.183.
Texto completoSTASIAK, ANDRZEJ. "QUANTUM-LIKE PROPERTIES OF KNOTS AND LINKS". En Proceedings of the International Conference on Knot Theory and Its Ramifications. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792679_0030.
Texto completoStarrett, John. "The Pendulum Weaves All Knots and Links". En EXPERIMENTAL CHAOS: 7th Experimental Chaos Conference. AIP, 2003. http://dx.doi.org/10.1063/1.1612264.
Texto completoPrzytycki, Jozef H. "Skein module deformations of elementary moves on links". En Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2003. http://dx.doi.org/10.2140/gtm.2002.4.313.
Texto completoMEDNYKH, ALEXANDER D. "Trigonometric identities and geometrical inequalities for links and knots". En Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0032.
Texto completoStanford, Theodore. "Some computational results on mod 2 finite-type invariants of knots and string links". En Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2004. http://dx.doi.org/10.2140/gtm.2002.4.363.
Texto completoGODA, Hiroshi. "SOME ESTIMATES OF THE MORSE-NOVIKOV NUMBERS FOR KNOTS AND LINKS". En Intelligence of Low Dimensional Topology 2006 - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770967_0005.
Texto completoBUNIY, ROMAN V. y THOMAS W. KEPHART. "GLUEBALLS AND THE UNIVERSAL ENERGY SPECTRUM OF TIGHT KNOTS AND LINKS". En Proceedings of the 32nd Coral Gables Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701992_0001.
Texto completoKAWAMURA, TOMOMI. "LOWER BOUNDS FOR THE UNKNOTTING NUMBERS OF THE KNOTS OBTAINED FROM CERTAIN LINKS". En Proceedings of the International Conference on Knot Theory and Its Ramifications. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792679_0013.
Texto completoIto, Tetsuya y Keiko Kawamuro. "On the self-linking number of transverse links". En Interactions between low-dimensional topology and mapping class groups. Mathematical Sciences Publishers, 2015. http://dx.doi.org/10.2140/gtm.2015.19.157.
Texto completoInformes sobre el tema "Transverse knots and links"
Wu, Yingjie, Selim Gunay y Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, noviembre de 2020. http://dx.doi.org/10.55461/ytgv8834.
Texto completo