Artículos de revistas sobre el tema "Transmission line model"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Transmission line model.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Transmission line model".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Baker, Louis. "Return-Stroke Transmission Line Model". Electromagnetics 7, n.º 3-4 (enero de 1987): 229–40. http://dx.doi.org/10.1080/02726348708908183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Junker, Gregory P., Allen W. Glisson y Ahmed A. Kishk. "Matched transmission-line source model". Microwave and Optical Technology Letters 14, n.º 2 (5 de febrero de 1997): 94–99. http://dx.doi.org/10.1002/(sici)1098-2760(19970205)14:2<94::aid-mop6>3.0.co;2-g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lowery, Arthur James. "Transmission-line modelling of semiconductor lasers: The transmission-line laser model". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 2, n.º 4 (diciembre de 1989): 249–65. http://dx.doi.org/10.1002/jnm.1660020408.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lee, Jingeol. "Transmission line based struck string model". Applied Acoustics 111 (octubre de 2016): 1–7. http://dx.doi.org/10.1016/j.apacoust.2016.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Cristina Tavares, Maria, José Pissolato Filho y Carlos Manuel Portela. "Quasi-modes multiphase transmission line model". Electric Power Systems Research 49, n.º 3 (abril de 1999): 159–67. http://dx.doi.org/10.1016/s0378-7796(98)00105-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Baum, Carl E. y Louis Baker. "Analytic Return-Stroke Transmission-Line Model". Electromagnetics 7, n.º 3-4 (enero de 1987): 205–28. http://dx.doi.org/10.1080/02726348708908182.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lee. "Transmission Line Based Plucked String Model". JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA 32, n.º 4 (2013): 361. http://dx.doi.org/10.7776/ask.2013.32.4.361.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Thirukumaran, Sanmugasundaram, Paul Ratnamahilan Polycarp Hoole, Ramiah Harikrishnan, Kanesan Jeevan, Kandasamy Pirapaharan y Samuel Ratnajeevan Herbert Hoole. "AIRCRAFT-LIGHTNING ELECTRODYNAMICS USING THE TRANSMISSION LINE MODEL PART I: REVIEW OF THE TRANSMISSION LINE MODEL". Progress In Electromagnetics Research M 31 (2013): 85–101. http://dx.doi.org/10.2528/pierm12110303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Milford, R. V. y A. M. Goliger. "Tornado risk model for transmission line design". Journal of Wind Engineering and Industrial Aerodynamics 72 (noviembre de 1997): 469–78. http://dx.doi.org/10.1016/s0167-6105(97)00262-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Arnoldussen, T. C. "A modular transmission line/reluctance head model". IEEE Transactions on Magnetics 24, n.º 6 (1988): 2482–84. http://dx.doi.org/10.1109/20.92148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Tavares, M. C., J. Pissolato y C. M. Portela. "New multiphase mode domain transmission line model". International Journal of Electrical Power & Energy Systems 21, n.º 8 (noviembre de 1999): 585–601. http://dx.doi.org/10.1016/s0142-0615(99)00023-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Antonsen, Thomas M., Alexander N. Vlasov, David P. Chernin, Igor A. Chernyavskiy y Baruch Levush. "Transmission Line Model for Folded Waveguide Circuits". IEEE Transactions on Electron Devices 60, n.º 9 (septiembre de 2013): 2906–11. http://dx.doi.org/10.1109/ted.2013.2272659.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Syms, Richard R. A., Oleksiy Sydoruk y Laszlo Solymar. "Transmission-Line Model of Noisy Electromagnetic Media". IEEE Transactions on Microwave Theory and Techniques 61, n.º 1 (enero de 2013): 14–22. http://dx.doi.org/10.1109/tmtt.2012.2226742.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Maffucci, Antonio y Giovanni Miano. "Transmission Line Model of Graphene Nanoribbon Interconnects". Nanoscience and Nanotechnology Letters 5, n.º 11 (1 de noviembre de 2013): 1207–16. http://dx.doi.org/10.1166/nnl.2013.1700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bhattacharyya, A. K. y R. Garg. "Generalised transmission line model for microstrip patches". IEE Proceedings H Microwaves, Antennas and Propagation 132, n.º 2 (1985): 93. http://dx.doi.org/10.1049/ip-h-2.1985.0019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kinowski, D., C. Seguinot, P. Pribetich y P. Kennis. "Transmission line model for superconducting coplanar lines". Electronics Letters 26, n.º 2 (1990): 148. http://dx.doi.org/10.1049/el:19900100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

N. Kakde, Ashish. "Transmission Line Fault Location based on Distributed Parameter Line Model". International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 04, n.º 03 (20 de marzo de 2015): 1359–66. http://dx.doi.org/10.15662/ijareeie.2015.0403028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ma¨kinen, Jari, Robert Piche´ y Asko Ellman. "Fluid Transmission Line Modeling Using a Variational Method". Journal of Dynamic Systems, Measurement, and Control 122, n.º 1 (4 de noviembre de 1998): 153–62. http://dx.doi.org/10.1115/1.482449.

Texto completo
Resumen
A variational method is used to derive numerical models for transient flow simulation in fluid transmission lines. These are generalizations of models derived using the more traditional modal method. Three different transient compressible laminar pipe flow models are considered (inviscous, one-dimensional linear viscous, and two-dimensional dissipative viscous flow), and a model for transient turbulent pipe flow is given. The (model) equations in the laminar case are given in the form of a set of constant coefficient ordinary differential equations, and for the turbulent case (model) in the form of a set of nonlinear ordinary differential equations. Explicit equations are given for various end conditions. Attenuation factors, similar to the window functions used in spectral analysis, are used to attenuate Gibbs phenomenon oscillations. [S0022-0434(00)03201-9]
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Nguyen, Linh V. T., Arthur J. Lowery, Phil C. R. Gurney, Dalma Novak y Casper N. Murtonen. "Efficient material-gain models for the transmission-line laser model". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 8, n.º 5 (septiembre de 1995): 315–30. http://dx.doi.org/10.1002/jnm.1660080502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Meng, Sui Min, Wei Hua Kang, Peng Jiang, Wen Jing Liu y Hao Guo. "Parametric Modeling Technology for Transmission Line Towers". Applied Mechanics and Materials 313-314 (marzo de 2013): 999–1002. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.999.

Texto completo
Resumen
Transmission towers have characteristics of similarities and succession; therefore parametric modeling ideas can be used in simulation study on the tower. Using CSG method, characteristics parameters extraction and the 2Z2E3 double-loop linear tower, the paper suggests parametric modeling analyzing the 2Z2E3 double-loop linear tower. Finally, its verified that the feasibility of parametric modeling through the modal analysis comparison between parametric model and GUI model in ANSYS.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Navarro-Adlemo, R. y C. Breitholtz. "HVDC-Transmission Line Model for Transient Simulation Purposes". IFAC Proceedings Volumes 25, n.º 1 (marzo de 1992): 305–10. http://dx.doi.org/10.1016/s1474-6670(17)50471-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Mejdoub, Youssef, Hicham Rouijaa y Abdelilah Ghammaz. "Optimization circuit model of a multiconductor transmission line". International Journal of Microwave and Wireless Technologies 6, n.º 6 (28 de febrero de 2014): 603–9. http://dx.doi.org/10.1017/s1759078714000129.

Texto completo
Resumen
This paper presents an optimization circuit model of multiconductor transmission lines in the time domain. Several methods allow calculation of the currents and the tensions distributed on the uniform transmission line. Most of these methods are limited to lines with constant losses, and only for linear loads. The macro-model we propose, using Pade approximant, employs more variables and allows it to reduce the necessary cells' number in modelization than the traditional cells cascade method. This macro-model, using the Modified Nodal Analysis method (MNA), is suitable for an inclusion in circuit simulator, such as Esacap, Spice, and Saber. The MNA method offers an efficient means to discretize transmission lines on real and complex cells compared to the conventional lumped discretization. In addition, the model can directly handle frequency-dependent line parameters in the time domain. An example, with experimental measures taken from literature, is presented to validate the model we propose, and show its importance. It is necessary for assuring the results validity obtained from Pade macro-model to study its stability and passivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kagawa, Toshiharu, Ato Kitagawa, Kazushi Sanada y Toshio Takenaka. "A REDUCED MODEL FOR A PNEUMATIC TRANSMISSION LINE". Proceedings of the JFPS International Symposium on Fluid Power 1989, n.º 1 (1989): 449–55. http://dx.doi.org/10.5739/isfp.1989.449.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Paasch, G. "Complete electrochemical transmission line model for conducting polymers". Synthetic Metals 119, n.º 1-3 (marzo de 2001): 233–34. http://dx.doi.org/10.1016/s0379-6779(00)00865-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Patzek, Tadeusz W. y Asoke De. "Lossy transmission line model of hydrofractured well dynamics". Journal of Petroleum Science and Engineering 25, n.º 1-2 (enero de 2000): 59–77. http://dx.doi.org/10.1016/s0920-4105(99)00055-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bangayan, Philbert, Abeer Alwan y Shrikanth Narayanan. "A transmission‐line model of the lateral approximants". Journal of the Acoustical Society of America 100, n.º 4 (octubre de 1996): 2663. http://dx.doi.org/10.1121/1.417474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Kim, S. J., J. J. Lee, D. W. Kim, J. H. Kim y S. J. You. "A transmission line model of the cutoff probe". Plasma Sources Science and Technology 28, n.º 5 (23 de mayo de 2019): 055014. http://dx.doi.org/10.1088/1361-6595/ab1dc8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Abou-Allam, E. y T. Manku. "An improved transmission-line model for MOS transistors". IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46, n.º 11 (1999): 1380–87. http://dx.doi.org/10.1109/82.803477.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ottinger, Paul F., Joseph W. Schumer, David D. Hinshelwood y Raymond J. Allen. "Generalized Model for Magnetically Insulated Transmission Line Flow". IEEE Transactions on Plasma Science 36, n.º 5 (octubre de 2008): 2708–21. http://dx.doi.org/10.1109/tps.2008.2004221.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Nguyen-Trong, Nghia, Leonard Hall y Christophe Fumeaux. "Transmission-Line Model of Nonuniform Leaky-Wave Antennas". IEEE Transactions on Antennas and Propagation 64, n.º 3 (marzo de 2016): 883–93. http://dx.doi.org/10.1109/tap.2016.2517669.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Timofeeva, M. V. "Enhanced analytical model of power transmission line icing". Safety and Reliability of Power Industry 11, n.º 3 (21 de octubre de 2018): 222–26. http://dx.doi.org/10.24223/1999-5555-2018-11-3-222-226.

Texto completo
Resumen
Accidents in power transmission lines under icing conditions, in particular, those of cables, cause a great economic damage in Russia. Because of the lack of the possibility to forecast and evaluate reliably the consequences of weather conditions contributing to icing of transmisison line cables, power grid services often have to go to the place of a potential accident relying on guesswork. This leads to considerable losses of time and material resources, while the average recovery time of a damaged high voltage power transmission line is 5–10 days.For the effective prediction and timely prevention of negative consequences of icing of on power line cables, an analytical model that describes the growth of ice on the surface of the electrical cable has been developed. The model is based on a widely applicable analytical model of [1], supplemented with dependence of the growth of ice sleeve on the angle between the wind direction and the cable, and on the electric field strength of the cable.The results obtained using the new analytical model and the [1], model have been compared and show that as the angle between the wind direction and the cable decreases, the intensity of the ice growth decreases significantly. At the same time, the strength of the electric field of the cable affects negligibly the trajectory of water droplets.A conclusion is drawn about insignificance of electrical field strength of the electric cable as a factor of growth of ice deposits. It is stated that the ice thickness value obtained using the developed model can be increased under specific weather conditions and design parameters of transmission lines. The obtained model can be improved by using other physical effects that affect icing of electric cables. Further, the model can be introduced in operation of energy companies to monitor the condition of power transmission lines and to carry out anti-icing activities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Yaqing Liu, M. Zitnik y R. Thottappillil. "An improved transmission-line model of grounding system". IEEE Transactions on Electromagnetic Compatibility 43, n.º 3 (2001): 348–55. http://dx.doi.org/10.1109/15.942606.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wang, Lei, James H. Giusti y Juan Fernandez-de-Castro. "Hybrid transmission line-micromagnetic model for MR heads". Journal of Applied Physics 87, n.º 9 (mayo de 2000): 5007–9. http://dx.doi.org/10.1063/1.373230.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Maffucci, A., G. Miano y F. Villone. "An Enhanced Transmission Line Model for Conducting Wires". IEEE Transactions on Electromagnetic Compatibility 46, n.º 4 (noviembre de 2004): 512–28. http://dx.doi.org/10.1109/temc.2004.837685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Breitholtz, C., M. Molander y R. Navarro-Adlemo. "Space and time continuous lumped transmission line model". IEE Proceedings G Circuits, Devices and Systems 138, n.º 6 (1991): 661. http://dx.doi.org/10.1049/ip-g-2.1991.0108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Castellanos, F. y J. R. Marti. "Full frequency-dependent phase-domain transmission line model". IEEE Transactions on Power Systems 12, n.º 3 (1997): 1331–39. http://dx.doi.org/10.1109/59.630478.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Filiâtre, C., G. Bardèche y M. Valentin. "Transmission-line model for immersed quartz-crystal sensors". Sensors and Actuators A: Physical 44, n.º 2 (agosto de 1994): 137–44. http://dx.doi.org/10.1016/0924-4247(94)00796-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Albery, W. John y Andrew R. Mount. "A second transmission line model for conducting polymers". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 305, n.º 1 (abril de 1991): 3–18. http://dx.doi.org/10.1016/0022-0728(91)85199-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Jardines, A., J. L. Guardado, J. Torres, J. J. Chávez y M. Hernández. "A multiconductor transmission line model for grounding grids". International Journal of Electrical Power & Energy Systems 60 (septiembre de 2014): 24–33. http://dx.doi.org/10.1016/j.ijepes.2014.02.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Cleber da Silva, Rodrigo. "Alternative Model of Three-Phase Transmission Line Theory-Based Modal Decomposition". IEEE Latin America Transactions 10, n.º 5 (septiembre de 2012): 2074–79. http://dx.doi.org/10.1109/tla.2012.6362351.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Mohd Zin, Abdullah Asuhaimi y Alireza Tavakoli Ghainani. "Calculation of Parameters of Six-Phase Transmission Line Using Carson’s Line Model". International Journal on Engineering Applications (IREA) 6, n.º 4 (31 de julio de 2018): 118. http://dx.doi.org/10.15866/irea.v6i4.16020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

G-Kurup, D., A. Rydberg y M. Himdi. "Transmission line model for field distribution in microstrip line fed H-slots". Electronics Letters 37, n.º 14 (2001): 873. http://dx.doi.org/10.1049/el:20010590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Katsadze, T. L., D. V. Nastenko, O. M. Panienko y O. M. Iankovska. "STUDY OF VOLTAGE MODE IN THE LONG-DISTANCE AC TRANSMISSION LINE". Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021, n.º 59 (20 de septiembre de 2021): 43–55. http://dx.doi.org/10.15407/publishing2021.59.043.

Texto completo
Resumen
The charging currents of EHV transmission lines cause the Ferranti effect, which causes an increase in voltage at intermediate points transmission line. The work aims to study the laws of the voltage distribution along the line route and to develop a method for determining the coordinates of a point with extreme voltage. Methodology. Mathematical modeling of long-distance transmission lines in Wolfram Mathematica allowed to form the laws of the voltage distribution along the line and determine the coordinate of the extreme point on the voltage. Results. It is shown that the application of the traditional model of idealized power transmission causes high modeling accuracy only in the modes of unloaded line and low loads. In the range of medium and high loads, the simulation error reaches unacceptably large values. The paper proposes more accurate models for determining the coordinate of an extreme voltage point: linearized and second- and third-order models. It is shown that the proposed models are characterized by higher accuracy in a wide range of loads. Increasing the degree of the model results in higher accuracy, but is associated with an increase in the cumbersomeness of the mathematical model. It is shown that first and second-order models provide sufficient accuracy for typical designs of 750 kV power transmission lines. It is shown that neglecting the losses on the corona has almost no effect on the accuracy of calculating the coordinates of the extreme point on the voltage, which simplifies the linear calculation model and models of the second and third-order. Originality. Mathematical models of the first, second and third orders have been developed for high-precision determination of the coordinate of a voltage-extreme point along a long-distance transmission line. Practical significance. The offered mathematical models are intended for application in problems of regulation and adjustment of parameters of flexible power transmissions. Ref. 12, figure, tables 4.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

HWANGKHUNNATHAM, METHEE y EKACHAI LEELARASMEE. "A TWO LEVEL TRANSMISSION LINE MODEL FOR TRANSIENT ANALYSIS". Journal of Circuits, Systems and Computers 09, n.º 01n02 (febrero de 1999): 113–24. http://dx.doi.org/10.1142/s0218126699000104.

Texto completo
Resumen
An efficient approach based on conventional techniques for transient analysis of transmission line circuit initially modelled as large number (N) of segments of lumped components is presented. This technique avoids the simultaneous solution of a large number of variables by computing an equivalent macromodel of each transmission line and splitting the analysis into two levels. The first level deals with a normal circuit analysis in which each transmission line is replaced by a simple lumped equivalent two port companion macromodel having only three resistors and two current sources. However, the initial N-segmented model of transmission line must be separately analyzed at the second level in order to update the transmission line companion macromodel at each timepoint. This latter analysis of the transmission line can be done efficiently using a set of recursive formulae whose complexities depend linearly on N. A simulation result of this technique is presented and compared with SPICE program.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hu, Yanzhe, Mengjie Xu y Yang Li. "Simulation Model and State Analysis of Ship Transmission Line". Polish Maritime Research 25, s3 (1 de diciembre de 2018): 36–42. http://dx.doi.org/10.2478/pomr-2018-0110.

Texto completo
Resumen
Abstract In order to discuss the simulation model of the ship transmission line and the state of the transmission line, an early fault model is built according to the evolution principle of the short circuit fault of the transmission line and combining with the fault characteristics of the early fault. A small distributed ship transmission line system is built in MATLAB/ Simulink. Then, combined with the constructed fault module, the original short circuit module, and the load module, the various states (normal state, early fault state, severe early fault state, short circuit state) of the ship transmission line are stimulated, and the features of voltage signal in each state is analysed. It is concluded that, due to the normal operation of the ship transmission line system, the variation characteristics of the flow signal and voltage signal caused by the sudden load mutation, that is, the sudden load and the sudden increase load, are very similar to the changes caused by the early fault. Therefore, in order to find a more accurate early fault detection method, the state is divided into normal state, sudden load state, sudden increase and sudden decrease load state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Li, Li, Wei Jiang y Hua Jin Cao. "Galloping of Transmission Tower-Line System and Anti-Galloping Research". Applied Mechanics and Materials 44-47 (diciembre de 2010): 2666–70. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.2666.

Texto completo
Resumen
A nonlinear finite element model of transmission tower-line coupling system including transmissions, towers and insulators is established based on ANSYS in this paper. The restarting technology is proposed to solve the vertical, horizontal and torsional galloping of the transmission conductors. Under the condition of different wind velocity, galloping of tower line system is performed to get amplitude of the transmissions and internal forces of the transmission towers. Based on the typical case, the galloping control measures of using interphase spacers and multi-point weighting are performed. Various layouts projects of the galloping control measures are carried out and the effective ones are attained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kumari, Rashmita. "Transmission Line Model for Patch Antenna on Metameterial Substrate". IOSR Journal of Electrical and Electronics Engineering 7, n.º 3 (2013): 20–23. http://dx.doi.org/10.9790/1676-0732023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sun, Yu y Xiu Li Wang. "Extreme Weather Loading Risk Model of Overhead Transmission Line". Advanced Materials Research 383-390 (noviembre de 2011): 2005–11. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.2005.

Texto completo
Resumen
Power grid suffers tremendous economic loss in extreme ice disaster weather, suggesting that it lacks immediate precautionary system. On the basis of the standards of Q/GDW179-2008 and IEC60826-2003, the curve of transmission line design loads is built up. In view of ransom character for load-strength of transmission line, according to load-strength interference theory, a short-term wind and ice loading risk model is established, which is a time-dependent wind and ice loading model, and can be calculated unreliability probability and fault rate, showing risks about cluster fault and common fault. Furthermore, wind and ice loads are divided into five states, which show risk margin of loads. It also can provide precautionary information for operator, and can present risk measurement on time scale.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ueda, Toshiaki, Masao Morita, Akihiro Ametani, Toshihisa Funabashi, Toyohisa Hagiwara y Hideto Watanabe. "Flashover Model for Arcing Horns and Transmission Line Arresters". IEEJ Transactions on Power and Energy 112, n.º 12 (1992): 1085–92. http://dx.doi.org/10.1541/ieejpes1990.112.12_1085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Saksiri, Wiset. "Transmission Line Model for an Edge-Coupled Patch Antenna". ETRI Journal 30, n.º 5 (8 de octubre de 2008): 723–28. http://dx.doi.org/10.4218/etrij.08.0108.0205.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía