Literatura académica sobre el tema "Topologically-ordered phases"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Topologically-ordered phases".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Topologically-ordered phases"
Lee, In-Hwan, Hoang-Anh Le y S. R. Eric Yang. "Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons". Entropy 25, n.º 10 (15 de octubre de 2023): 1449. http://dx.doi.org/10.3390/e25101449.
Texto completoHussien, Musa A. M. y Aniekan Magnus Ukpong. "Electrodynamics of Topologically Ordered Quantum Phases in Dirac Materials". Nanomaterials 11, n.º 11 (30 de octubre de 2021): 2914. http://dx.doi.org/10.3390/nano11112914.
Texto completoGROVER, TARUN. "ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER". Modern Physics Letters A 28, n.º 05 (6 de febrero de 2013): 1330001. http://dx.doi.org/10.1142/s0217732313300012.
Texto completoSpanton, Eric M., Alexander A. Zibrov, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Michael P. Zaletel y Andrea F. Young. "Observation of fractional Chern insulators in a van der Waals heterostructure". Science 360, n.º 6384 (1 de marzo de 2018): 62–66. http://dx.doi.org/10.1126/science.aan8458.
Texto completoDaniel, Austin K., Rafael N. Alexander y Akimasa Miyake. "Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices". Quantum 4 (10 de febrero de 2020): 228. http://dx.doi.org/10.22331/q-2020-02-10-228.
Texto completoJacobsen, Brad, Karl Saunders, Leo Radzihovsky y John Toner. "Two New Topologically Ordered Glass Phases of Smectics Confined in Anisotropic Random Media". Physical Review Letters 83, n.º 7 (16 de agosto de 1999): 1363–66. http://dx.doi.org/10.1103/physrevlett.83.1363.
Texto completoSaunders, Karl, Brad Jacobsen, Leo Radzihovsky y John Toner. "Topologically ordered phases of smectics confined in anisotropic random media: smectic Bragg glasses". Journal of Physics: Condensed Matter 12, n.º 8A (17 de febrero de 2000): A215—A220. http://dx.doi.org/10.1088/0953-8984/12/8a/326.
Texto completoOreg, Yuval y Felix von Oppen. "Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation". Annual Review of Condensed Matter Physics 11, n.º 1 (10 de marzo de 2020): 397–420. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013618.
Texto completoWen, Xiao-Gang. "A theory of 2+1D bosonic topological orders". National Science Review 3, n.º 1 (24 de noviembre de 2015): 68–106. http://dx.doi.org/10.1093/nsr/nwv077.
Texto completoWen, Xiao-Gang. "Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons". ISRN Condensed Matter Physics 2013 (27 de marzo de 2013): 1–20. http://dx.doi.org/10.1155/2013/198710.
Texto completoTesis sobre el tema "Topologically-ordered phases"
Karlsson, Eilind. "Kitaev models for topologically ordered phases of matter". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62814.
Texto completoRitz-Zwilling, Anna. "Topological order at finite temperature in string-net and quantum double models". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.
Texto completoTopological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Capítulos de libros sobre el tema "Topologically-ordered phases"
"Geometric Berry Phase and Chern Number". En Topologically Ordered Zigzag Nanoribbon, 21–50. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0002.
Texto completo"Matrix Product States and Disordered Anyon Phase". En Topologically Ordered Zigzag Nanoribbon, 487–511. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0021.
Texto completo"Anomalous Velocity, Polarization, Zak Phase, and Chern Number". En Topologically Ordered Zigzag Nanoribbon, 109–31. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0005.
Texto completoSimon, Steven H. "Robustness of Topologically Ordered Matter". En Topological Quantum, 407–18. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198886723.003.0029.
Texto completoActas de conferencias sobre el tema "Topologically-ordered phases"
Seepersad, Carolyn Conner, Janet K. Allen, David L. McDowell y Farrokh Mistree. "Robust Design of Cellular Materials With Topological and Dimensional Imperfections". En ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85061.
Texto completo