Literatura académica sobre el tema "Topographic flow"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Topographic flow".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Topographic flow"
Sinha, Surbhi y Vinay Kumar Rai. "Topographical Characteristics of Lower Barakar Basin: A Geospatial Approach". National Geographical Journal of India 66, n.º 1 (31 de marzo de 2020): 12–19. http://dx.doi.org/10.48008/ngji.1725.
Texto completoCasas, A., S. N. Lane, D. Yu y G. Benito. "A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data". Hydrology and Earth System Sciences Discussions 7, n.º 2 (12 de abril de 2010): 2261–99. http://dx.doi.org/10.5194/hessd-7-2261-2010.
Texto completoCasas, A., S. N. Lane, D. Yu y G. Benito. "A method for parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data". Hydrology and Earth System Sciences 14, n.º 8 (17 de agosto de 2010): 1567–79. http://dx.doi.org/10.5194/hess-14-1567-2010.
Texto completoChu, Xuefeng, Xinhua Jia y Yang Liu. "Quantification of wetting front movement under the influence of surface topography". Soil Research 56, n.º 4 (2018): 382. http://dx.doi.org/10.1071/sr17071.
Texto completoShakespeare, Callum J., Brian K. Arbic y Andrew McC. Hogg. "The Drag on the Barotropic Tide due to the Generation of Baroclinic Motion". Journal of Physical Oceanography 50, n.º 12 (diciembre de 2020): 3467–81. http://dx.doi.org/10.1175/jpo-d-19-0167.1.
Texto completoRichter, Nicole, Massimiliano Favalli, Elske de Zeeuw-van Dalfsen, Alessandro Fornaciai, Rui Manuel da Silva Fernandes, Nemesio M. Pérez, Judith Levy, Sónia Silva Victória y Thomas R. Walter. "Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption". Natural Hazards and Earth System Sciences 16, n.º 8 (17 de agosto de 2016): 1925–51. http://dx.doi.org/10.5194/nhess-16-1925-2016.
Texto completoKumhálová, J., F. Kumhála, P. Novák y Š. Matějková. "Airborne laser scanning data as a source of field topographical characteristics ". Plant, Soil and Environment 59, No. 9 (5 de septiembre de 2013): 423–31. http://dx.doi.org/10.17221/188/2013-pse.
Texto completoHarmon, Brendan Alexander, Helena Mitasova, Anna Petrasova y Vaclav Petras. "r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology". Geoscientific Model Development 12, n.º 7 (11 de julio de 2019): 2837–54. http://dx.doi.org/10.5194/gmd-12-2837-2019.
Texto completoSANSÓN, L. ZAVALA, A. GONZÁLEZ-VILLANUEVA y L. M. FLORES. "Evolution and decay of a rotating flow over random topography". Journal of Fluid Mechanics 642 (4 de diciembre de 2009): 159–80. http://dx.doi.org/10.1017/s0022112009991777.
Texto completoConstantinou, Navid C. "A Barotropic Model of Eddy Saturation". Journal of Physical Oceanography 48, n.º 2 (febrero de 2018): 397–411. http://dx.doi.org/10.1175/jpo-d-17-0182.1.
Texto completoTesis sobre el tema "Topographic flow"
Marklund, Lars. "Topographic Control of Groundwater Flow". Doctoral thesis, KTH, Mark- och vattenteknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11153.
Texto completoGravitationen är den mest betydelsefulla drivkraften för grundvattenströmning. Topografin och geologin fördelar vattnets potentiella energi i landskapet. Grundvattenytans läge definierar vattnets potentiella energi, vilket är ett randvillkor för grundvattnets strömningsfält. I humida områden med en relativt tät berggrund och tillräckligt tunna jordlager, följer grundvattenytan landskapets topografi. Därav följer att grundvattenströmningen är styrd av topografin i dessa områden. I denna avhandling belyser jag den flerskaliga topografistyrda grundvattenströmningen. Min målsättning har varit att kvantitativt bestämma grundvattenströmningens rumsliga fördelning samt att undersöka hur olika geologiska parametrar påverkar grundvattencirkulationen. Jag har använt såväl numeriska modeller som analytiska lösningar, för att undersöka hur topografin styr grundvattenströmningen. De numeriska modellerna är mer komplexa än de analytiska lösningarna och kan därför användas för att undersöka betydelserna av olika förenklingar som finns i de analytiska lösningarna. De analytiska lösningarna är baserade på spektralanalys av topografin, samt superponering av enhetslösningar, där varje enhetslösning beskriver hur en specifik topografisk skala påverkar grundvattnets strömningsfält. Detta är ett effektivt tillvägagångssätt för att undersöka flerskaliga effekter av topografin, eftersom påverkan av varje enskild topografisk skala kan studeras separat. Resultaten som presenteras indikerar att topografin är fraktal och att den ger upphov till cirkulationsceller av varierande storlek som även dessa är av en fraktal natur. Denna grundläggande fördelning i grundvattnets strömningsfält ger upphov till att grundvattnets uppehållstid i marken följer ett självlikformigt mönster och kan förklara uppmätta tidsvariationer av lösta ämnens koncentrationer i vattendrag efter regn. Geologiska trender påverkar hur grundvattenströmningen styrs av topografin. De exakta lösningar som presenteras här, beskriver hur geologiska lager samt djupavtagande och anisotropisk hydraulisk konduktivitet påvekar grundvattnets strömning. Exempelvis är betydelsen av mindre topografiska skalor viktigare i områden med kvartära avlagringar och en berggrund med djupavtagande konduktivitet, än i områden med homogen bergrund utan kvartära avlagringar. Dessutom är en större andel strömmande vatten belägen närmare markytan i de förstnämnda områdena.
QC 20100802
Holt, Jason Tempest. "Topographic influences on Kelvin-Helmholtz instability". Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295515.
Texto completoMarks, Kathryn Jean. "Enhanced flood hydraulic modelling using topographic remote sensing". Thesis, University of Bristol, 2001. http://hdl.handle.net/1983/e9866673-d6aa-49b5-964c-ed984940801c.
Texto completoWichura, Henry. "Topographic evolution of the East African Plateau : a combined study on lava-flow modeling and paleo-topography". Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5236/.
Texto completoDas Ostafrikanische Plateau ist ein eindrucksvolles Beispiel für aktive, kontinentale Grabenbildung, aber auch für geodynamische Hochebenenbildung mit weitreichendem klimatischen Einfluss auf die gesamte Region. Als integraler Bestandteil des Ostafrikanischen Grabensystems beläuft sich die mittlere Höhe des Plateaus auf durchschnittlich 1000 m ü.NN. Seine Lage korreliert gut mit der Präsenz einer halbkreisförmigen negativen Bouguer-Schwereanomalie, die an den Aufstieg eines Manteldiapirs im Untergrund gekoppelt ist. Dieser prägte die känozoische Krustenentwicklung seit seinem Aufstieg im Eozän-Oligozän. Die Hebungsgeschichte und topographische Entwicklung des Hochlandes steht seither in enger Beziehung zum einsetzenden Vulkanismus, der Bildung erster Abschiebungssysteme und führte schließlich zur Entwicklung des heutigen Vollgrabensystems. Neueste Hypothesen lassen den Schluss zu, dass topographische Veränderungen als dominierende Einflussgrößen atmosphärischer Zirkulationsmuster sowie der regionalen Niederschlagsverbreitung anzusehen sind. Zusätzlich werden diese Prozesse durch die äquatoriale Lage des Ostafrikanischen Plateaus verstärkt und die Hebung dieser Region oft mit wichtigen Klima- und Umweltveränderungen in Ostafrika und angrenzende Gebiete in Verbindung gebracht. Während der weitreichende klimatische Einfluss des Hochlandes größtenteils akzeptiert ist, sind Zeitpunkt und Ausmaß seiner Heraushebung nicht eindeutig bestimmt und daher noch immer Grundlage bestehender Diskussionen. Diese Zwangslage hat ihre Ursache im Fehlen aussagekräftiger und datierbarer Referenzhorizonte. Um den Hebungsbetrag zu quantifizieren und Beweise signifikanten Reliefs vor der Entwicklung des Grabensystems entlang des Ostafrikanischen Hochlandes zu erbringen, analysierte und modellierte ich einen der längsten terrestrischen Lavaströme. Dieser vor 13,5 Ma abgelagerte Yatta-Lavastrom hat mit 300 km Länge seinen Ursprung in der Region der heutigen östlichen Grabenschulter des zentralen Kenia-Rifts. Die phonolitische Lava ergoss sich entlang eines Flussbettes, das einst die östliche Flanke des Hochlandes entwässerte. Aufgrund unterschiedlicher Erosionspotentiale bildet der Lavastrom gegenwärtig ein positives Relief und befindet sich oberhalb des Athi Flusses, der parallel zum Paläofluß, und somit versetzt zu seinen früheren Verlauf, strömt. Mein Ansatz der Lavastrom-Modellierung basiert auf einer Methode, die das Fließverhalten einer beliebigen Lava in Abhängigkeit von Temperatur und Magmenzusammensetzung in einem rechtwinkligen Kanal berechnet. Die wesentlichen Wachstumsmuster des Lavastroms sind durch ein eindimensionales Modell beschrieben, wobei Newtonsches Fließverhalten im Innern hinter der Lavastromfront von der zeitlichen Entwicklung der Viskosität und/oder der Fließgeschwindigkeit bestimmt wird. Vergleiche meiner Resultate mit verschiedenen Magmenzusammensetzungen zeigen, dass sich lange, kanalisierte Lavaströme mit hohen Ergussraten und schneller Platznahme bilden können. Dies geschieht unter annähernd isothermalen Bedingungen und erfordert laminares Fließen. Die Integration der Yatta- Lavastrom-Dimensionen und der bedeckten Paläotopographie (Neigungswinkel) in das Modell, erlaubte es mir die Topographie des Ostafrikanischen Hochlandes vor der Grabenbildung zu modellieren. Das Ergebnis der Modellierung ergibt einen Neigungswinkel von mindestens 0,2° und impliziert, dass der Lavastrom seinen Ursprung in einer Höhe von mindestens 1400 m ü.NN gehabt haben muss. Somit existierte bereits vor 13,5 Ma hohe Topographie in der heutigen Region des zentralen Kenia-Rifts. Diese abgeleitete regionale Hebungsgeschichte im mittleren Miozän korreliert mit der zweistufigen Ausbreitung der Graslandschaften, sowie dem Aufkommen neuer Arten im tropischen Afrika. Die Kombination aus Fließverhalten, Entstehungsort und morphologischer Eigenschaften macht den Yatta-Lavastrom zu einem “Paläoneigungsmesser” und wichtigen vulkanischen Untersuchungsobjekt für die topographische Entwicklung in Ostafrika.
Milne, Fraser Dalton. "Topographic and material controls on the Scottish debris flow geohazard". Thesis, University of Dundee, 2008. https://discovery.dundee.ac.uk/en/studentTheses/eb4a6b03-8024-4818-8e92-ce1fd3c77209.
Texto completoRizo, Steven R. "Quantifying the Effect of Topographic Slope on Lava Flow Thickness: A First Step to Improve Lava Flow Volume Estimation Methods". Scholar Commons, 2018. http://scholarcommons.usf.edu/etd/7222.
Texto completoCUCCHIARO, SARA. "Assessing sediment dynamics and check dams efficiency in a debris-flow catchment using multi-temporal topographic surveys". Doctoral thesis, Università degli Studi di Trieste, 2019. http://hdl.handle.net/11368/2962385.
Texto completoNasser, Antoine-Alexis. "Advancing the representation of flows along topography in z-coordinate ocean models". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS446.
Texto completoThe seafloor exerts a major control on ocean circulation. The discrete representation of marine topography in geopotential Ocean General Circulation Models (OGCMs) creates artificial steps that have adverse effects on the simulated circulation. This thesis aims at finding suitable ways to address the adverse effects of stepped topography in z-coordinate OGCMs. Using idealized configurations and exploring the potential of the Brinkman Volume Penalisation (BVP) method, we investigate the sensitivity of modelled currents to the presence of artificial steps along model boundaries. We first address the spurious lateral form drag (or textit{staircase problem}) highlighted by Adcroft and Marshall (1998). We show that staircase-like coastlines (and isobaths) behave as smooth boundaries when applying a textit{true} mirror condition on the boundary flow. The discrete implementation of free-slip using flux-form advection and a symmetric viscous stress tensor actually corresponds to no-slip along stepped topography. The choice of viscous boundary condition should vary with location to capture the retroflection of boundary currents at capes. To become insensitive to stepped topography, numerical models should ideally achieve physical convergence (i.e. the main characteristics of the flow are not affected by increasing spatial resolution while keeping viscous and frictional parameters constant). This convergence can be attained at lower resolution with a careful treatment of discrete momentum advection involving a large stencil. We highlight the impact of momentum advection schemes on the fidelity of simulated downslope currents within an idealised overflow configuration. The BVP method allows to spread the land-ocean interface, by introducing porous cells that are half-land half-ocean. We find that this spreading allows to smooth bottom currents and to reduce spurious mixing during downslope flow. The numerical stability of the BVP can be guaranteed by sufficient spreading of the boundary and by defining permeability (friction within porous cells) in a consistent way. The results underscore the potential of the BVP method to better represent flows along topography in OGCMs
Raja, Keshav Jayakrishnan. "Internal waves and mean flow in the presence of topography". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAU006/document.
Texto completoInternal waves play an important role in many processes in oceans. The interaction be-tween internal waves and ocean topography has been an active field of research for long. Yetthere are many questions remaining on the topic. In this thesis, two main processes are ex-amined namely, the reflection of internal wave beams on a slope, and generation of lee wavesover a three-dimensional obstacle, using laboratory experiments and numerical simulations.The nonlinear reflection of an internal wave beam on a uniform slope is studied using two-dimensional inviscid theory and numerical simulations. The resonant triadic interactionsamong the incident, reflected and second harmonic wave beams are investigated developingon existing theory and verifying them with results for numerical simulations.In the case of reflection of three-dimensional internal wave beams, a strong mean horizon-tal flow is found to be induced by the wave beam, which perturbs the wave field and weakensthe second harmonics. The generation of this wave-induced mean flow is examined usingresults from experiments and three-dimensional numerical simulations. Furthermore, theeffects of background rotation on the wave induced mean flow are also studied using numer-ical simulations.The Antarctic Circumpolar Current is considered as one of the main sources of mixing inoceans. Laboratory modelling of the Antarctic Circumpolar Current was done in the Coriolisplatform at LEGI to study the topography induced drag on the current. The experiment andits results are also presented
Skopovi, Ivan 1976. "The role of background flow variations in stratified flows over topography". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35632.
Texto completoIncludes bibliographical references (leaves 89-91).
As the atmosphere and oceans feature density variations with depth, the flow of a density-stratified fluid over topography is central to various geophysical and meteorological applications and has been studied extensively. For reasons of convenience and mathematical tractability, the majority of theoretical treatments of stratified flow over a finite-amplitude obstacle assume idealized background flow conditions, namely constant free-stream velocity and either a homogeneous or two-layer buoyancy-frequency profile. In this work, a numerical model is developed that accounts for general variations in the buoyancy-frequency profile far upstream and the presence of unsteadiness in the free-stream velocity. The model employs a second-order projection method for solving the Euler equations for stratified flow over locally confined topography in a horizontally and vertically unbounded domain - the flow configuration most pertinent to atmospheric applications - combined with absorbing viscous layers at the upper and lateral boundaries of the computational domain. Using this model, a study is first made of the effect of variations in the buoyancy frequency on the generation of mountain gravity waves.
(cont.) Balloon measurements reveal that, apart from a sharp increase (roughly by a factor of 2) at the so-called tropopause, atmospheric buoyancy-frequency profiles often feature appreciable oscillations (typical wavelength 1-2 kni). It is found that such short-scale oscillatory variations can have a profound effect on mountain waves owing to a resonance mechanism that comes into play at certain wind speeds depending on the oscillation length scale. A simple linear model assuming small sinusoidal buoyancy-frequency oscillations suggests, and numerical simulations for more realistic flow conditions confirm, that the induced gravity-wave activity under resonant conditions is significantly increased above and upstream of the mountain, causing transient wave breaking (overturning), similarly to resonant flow of finite depth over topography. The effect of temporal variations in the free-stream velocity is then explored for a range of amplitudes and periods typical of those encountered in the field. The simulations reveal that transient disturbances resulting from such variations can be significant, particularly in the nonlinear regime, and steady states predicted on the assumption of uniform wind may not be attainable.
by Ivan Skopovi.
Ph.D.
Libros sobre el tema "Topographic flow"
Baines, Peter G. Topographic effects in stratified flows. Cambridge: Cambridge University Press, 1995.
Buscar texto completoThompson, LuAnne. Flow over finite isolated topography. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1990.
Buscar texto completoRennick, Mary Alice. Air flow over large scale topography. Monterey, Calif: Naval Postgraduate School, 1989.
Buscar texto completoLuca, Ioana, Yih-Chin Tai y Chih-Yu Kuo. Shallow Geophysical Mass Flows down Arbitrary Topography. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-02627-5.
Texto completoCarl, Freeman D. y Intermountain Research Station (Ogden, Utah), eds. Influence of topography on cumulative pollen flow of fourwing saltbush. Ogden, UT (324 25th St., Ogden 84401): U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, 1993.
Buscar texto completoPetroliagis, Thomas I. Studies of barotropic flow over topography using a Galerkin Finite Element model. Monterey, California: Naval Postgraduate School, 1988.
Buscar texto completoSkupniewicz, C. E. Vandenberg Boundary Layer Survey (VBLS): Final report - results. Monterey, Calif: Naval Postgraduate School, 1990.
Buscar texto completoRao, Desiraju B. A method of calculating the total flow from a given sea surface topography. Greenbelt, Md: Goddard Space Flight Center, 1987.
Buscar texto completoP, Castro I., Rockliff N. J y Institute of Mathematics and Its Applications., eds. Stably stratified flows: Flow and dispersion over topography : based on the proceedings of the Fourth Conference on Stably Stratified Flows, organized by the Institute of Mathematics and Its Applications and held at the University of Surrey in September, 1992. Oxford: Clarendon Press, 1994.
Buscar texto completoBatchelor, G. K., Peter G. Baines, L. B. Freud, S. Leibovich y V. Tvergaard. Topographic Effects in Stratified Flows. Cambridge University Press, 1997.
Buscar texto completoCapítulos de libros sobre el tema "Topographic flow"
Sodnik, Jošt, Tomaž Podobnikar, Urška Petje y Matjaž Mikoš. "Topographic Data and Numerical Debris-Flow Modeling". En Landslide Science and Practice, 573–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31325-7_75.
Texto completoSodnik, Jošt y Matjaž Mikoš. "TXT-tool 3.386-1.1: Two-Dimensional Debris-Flow Modelling and Topographic Data". En Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools, 235–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57777-7_11.
Texto completoLay, Usman Salihu y Biswajeet Pradhan. "Identification of Debris Flow Initiation Zones Using Topographic Model and Airborne Laser Scanning Data". En GCEC 2017, 915–40. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8016-6_65.
Texto completoGrimshaw, R. "Resonant Flow over Topography". En Nonlinear Evolution Equations and Dynamical Systems, 209–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5_41.
Texto completoOki, S., Y. Katoh, K. Kurisu, T. Nakahara, T. Uozumi, Y. Tokuda, K. Emoto y S. Nishimura. "Effects of Glycerol on Brain Function in Normal Volunteers — Study on Regional Cerebral Blood Flow, Average Topographic EEG and Significance Probability Mapping". En Intracranial Pressure VII, 911–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73987-3_237.
Texto completoNosoko, T., T. Nagata, T. Shinzato y M. Fang. "The Refracted Image Moire Topography for Measuring Liquid Film Profiles". En Flow Visualization VI, 682–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84824-7_121.
Texto completoHolloway, Greg, Ken Brink y Dale Haidvogel. "Topographic Stress in Coastal Circulation Dynamics". En Poleward Flows Along Eastern Ocean Boundaries, 315–30. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8963-7_20.
Texto completoWang, Nairu, Suning Huang, Shuang Cao, Hongyu Zhang y Taotao Zhang. "Analysis on the Characteristics of Channel Scour and Deposition in the Nanjing Reach of the Yangtze River After Impoundment of the Three Gorges Reservoir". En Lecture Notes in Civil Engineering, 1460–70. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_129.
Texto completoMejia-Alvarez, Ricardo, Julio M. Barros y Kenneth T. Christensen. "Structural Attributes of Turbulent Flow Over a Complex Topography". En Coherent Flow Structures at Earth's Surface, 25–41. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118527221.ch3.
Texto completoNelson, Jonathan M. y J. Dungan Smith. "Flow in meandering channels with natural topography". En Water Resources Monograph, 69–102. Washington, D. C.: American Geophysical Union, 1989. http://dx.doi.org/10.1029/wm012p0069.
Texto completoActas de conferencias sobre el tema "Topographic flow"
Santos, R. y R. Menéndez Duarte. "Topographic signature of debris flow dominated channels: implications for hazard assessment". En DEBRIS FLOW 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/deb060291.
Texto completoNoack, M., G. Schmid, M. Thom y S. Wieprecht. "Testing ‘Structure-from-Motion’ photogrammetry for high-resolution topographic surveys in hydraulic laboratories". En The International Conference On Fluvial Hydraulics (River Flow 2016). Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315644479-100.
Texto completoHumphreys, Eugene. "WALLOWA BATHOLITH ROOT FOUNDERING, REGIONAL CRUSTAL FLOW AND TOPOGRAPHIC EVOLUTION". En GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-380003.
Texto completoHomoud, A. A., M. Ayub y E. Mohammed. "Integrated Topographic Multiphase Flow Modeling in Surface Pipelines - A Case Study". En SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/188117-ms.
Texto completoCattafesta, III, Louis y Jay Moore. "Review and application of non-topographic photogrammetry to quantitative flow visualization". En Advanced Measurement and Ground Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2180.
Texto completoSurvila, Kornelijus, Ahmet Artu Yιldιrιm, Ting Li, Yan Y. Liu, David G. Tarboton y Shaowen Wang. "A Scalable High-performance Topographic Flow Direction Algorithm for Hydrological Information Analysis". En XSEDE16: Diversity, Big Data, and Science at Scale. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2949550.2949571.
Texto completoBobrow, Taylor L. y Nicholas J. Durr. "An adaptive-coherence light source for hyperspectral, topographic, and flow-contrast imaging". En Multimodal Biomedical Imaging XIV, editado por Fred S. Azar, Xavier Intes y Qianqian Fang. SPIE, 2019. http://dx.doi.org/10.1117/12.2510632.
Texto completoYan, B. W., Q. S. Li, Y. C. He y P. W. Chan. "Numerical Simulation of Topographic Effects on Wind Flow Fields Over Complex Terrain". En Eighth Asia-Pacific Conference on Wind Engineering. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-8012-8_083.
Texto completoGervais, Felix, Giorgio Ranalli y Sophie Jannin. "IS TOPOGRAPHIC GRADIENT THE ONLY DRIVING FORCE FOR CHANNEL FLOW IN LARGE-HOT OROGENS?" En 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-310711.
Texto completoWang, Chao, Jesus D. Gomez-Velez y John L. Wilson. "The importance of capturing topographic variability for modeling flow and transport in mountainous terrains". En 2016 New Mexico Geological Society Annual Spring Meeting. Socorro, NM: New Mexico Geological Society, 2016. http://dx.doi.org/10.56577/sm-2016.445.
Texto completoInformes sobre el tema "Topographic flow"
Carnevale, George F. Stratified Flow, Wave Packet Reflection and Topographic Currents. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada624782.
Texto completoKerr, D. E. Reconnaissance surficial geology, Sloan River, Northwest Territories-Nunavut, NTS 86-K. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329452.
Texto completoKerr, D. E. Reconnaissance surficial geology, Bloody River, Northwest Territories-Nunavut, NTS 96-P. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329457.
Texto completoGoff, Fraser, Jamie N. Gardner, Steven L. Reneau, Shari A. Kelley, Kirt A. Kempter y John R. Lawrence. Geologic map of the Valles Caldera, Jemez Mountains, New Mexico. New Mexico Bureau of Geology and Mineral Resources, 2011. http://dx.doi.org/10.58799/gm-79.
Texto completoJohnston, T. M. Flow Encountering Abrupt Topography. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada598658.
Texto completoArmi, Laurence. Topographic Effects on Stratified Flows. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada626454.
Texto completoWinters, Kraig B. Modeling Non-Hydrostatic Flow Over Topography. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada629083.
Texto completoGregg, Michael C. y Parker MacCready. Stratified Flow over Rough, Sloping Topography. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada629721.
Texto completoMiller, Peter. Internal Gravity Waves at Abrupt Topography. ARI: Flow Over Abrupt Topography. Fort Belvoir, VA: Defense Technical Information Center, enero de 1990. http://dx.doi.org/10.21236/ada231756.
Texto completoMacCready, Parker. Drag Mechanisms in Flow Over Rough Topography. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada624680.
Texto completo