Literatura académica sobre el tema "Time-Scales calculus"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Time-Scales calculus".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Time-Scales calculus"
Khan, A. R., F. Mehmood y M. A. Shaikh. "Обобщение неравенств Островского на временных шкалах". Владикавказский математический журнал 25, n.º 3 (25 de septiembre de 2023): 98–110. http://dx.doi.org/10.46698/q4172-3323-1923-j.
Texto completoTorrest, Delfim F. M. "The variational calculus on time scales". International Journal for Simulation and Multidisciplinary Design Optimization 4, n.º 1 (enero de 2010): 11–25. http://dx.doi.org/10.1051/ijsmdo/2010003.
Texto completoYaslan, İsmail. "Beta-Fractional Calculus on Time Scales". Journal of Fractional Calculus and Nonlinear Systems 4, n.º 2 (27 de diciembre de 2023): 48–60. http://dx.doi.org/10.48185/jfcns.v4i2.877.
Texto completoSahir, Muhammad Jibril Shahab. "Uniformity of dynamic inequalities constituted on time Scales". Engineering and Applied Science Letters 3, n.º 4 (24 de octubre de 2020): 19–27. http://dx.doi.org/10.30538/psrp-easl2020.0048.
Texto completoMalinowska, Agnieszka B. y Natália Martins. "The Second Noether Theorem on Time Scales". Abstract and Applied Analysis 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/675127.
Texto completoSahir, Muhammad Jibril Shahab. "Coordination of Classical and Dynamic Inequalities Complying on Time Scales". European Journal of Mathematical Analysis 3 (3 de febrero de 2023): 12. http://dx.doi.org/10.28924/ada/ma.3.12.
Texto completoGanie, Javid Ahmad y Renu Jain. "THE SUMUDU TRANSFORM ON DISCRETE TIME SCALES". Jnanabha 51, n.º 02 (2021): 58–67. http://dx.doi.org/10.58250/jnanabha.2021.51208.
Texto completoSahir, M. J. S. "Объединение классических и динамических неравенств, возникающих при анализе временных масштабов". Вестник КРАУНЦ. Физико-математические науки, n.º 4 (29 de diciembre de 2020): 26–36. http://dx.doi.org/10.26117/2079-6641-2020-33-4-26-36.
Texto completoZhao, Dafang y Tongxing Li. "On conformable delta fractional calculus on time scales". Journal of Mathematics and Computer Science 16, n.º 03 (15 de septiembre de 2016): 324–35. http://dx.doi.org/10.22436/jmcs.016.03.03.
Texto completoSeiffertt, John. "Adaptive Resonance Theory in the time scales calculus". Neural Networks 120 (diciembre de 2019): 32–39. http://dx.doi.org/10.1016/j.neunet.2019.08.010.
Texto completoTesis sobre el tema "Time-Scales calculus"
Ferreira, Rui Alexandre Cardoso. "Calculus of variations on time scales and discrete fractional calculus". Doctoral thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2921.
Texto completoEstudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
We study problems of the calculus of variations and optimal control within the framework of time scales. Specifically, we obtain Euler–Lagrange type equations for both Lagrangians depending on higher order delta derivatives and isoperimetric problems. We also develop some direct methods to solve certain classes of variational problems via dynamic inequalities. In the last chapter we introduce fractional difference operators and propose a new discrete-time fractional calculus of variations. Corresponding Euler–Lagrange and Legendre necessary optimality conditions are derived and some illustrative examples provided.
Dryl, Monika. "Calculus of variations on time scales and applications to economics". Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12869.
Texto completoWe consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. Afterwards, we prove Euler-Lagrange type equations and transversality conditions for generalized infinite horizon problems. Next we investigate the composition of a certain scalar function with delta and nabla integrals of a vector valued field. Euler-Lagrange equations in integral form, transversality conditions, and necessary optimality conditions for isoperimetric problems, on an arbitrary time scale, are proved. In the end, two main issues of application of time scales in economic, with interesting results, are presented. In the former case we consider a firm that wants to program its production and investment policies to reach a given production rate and to maximize its future market competitiveness. The model which describes firm activities is studied in two different ways: using classical discretizations; and applying discrete versions of our result on time scales. In the end we compare the cost functional values obtained from those two approaches. The latter problem is more complex and relates to rate of inflation, p, and rate of unemployment, u, which inflict a social loss. Using known relations between p, u, and the expected rate of inflation π, we rewrite the social loss function as a function of π. We present this model in the time scale framework and find an optimal path π that minimizes the total social loss over a given time interval.
Consideramos alguns problemas do cálculo das variações em escalas temporais. Primeiramente, demonstramos equações do tipo de Euler-Lagrange e condições de transversalidade para problemas de horizonte infinito generalizados. De seguida, consideramos a composição de uma certa função escalar com os integrais delta e nabla de um campo vetorial. Presta-se atenção a problemas extremais inversos para funcionais variacionais em escalas de tempo arbitrárias. Começamos por demonstrar uma condição necessária para uma equação dinâmica integro-diferencial ser uma equação de Euler-Lagrange. Resultados novos e interessantes para o cálculo discreto e quantum são obtidos como casos particulares. Além disso, usando a equação de Euler-Lagrange e a condição de Legendre fortalecida, obtemos uma forma geral para uma funcional variacional atingir um mínimo local, num determinado ponto do espaço vetorial. No final, duas aplicações interessantes em termos económicos são apresentadas. No primeiro caso, consideramos uma empresa que quer programar as suas políticas de produção e de investimento para alcançar uma determinada taxa de produção e maximizar a sua competitividade no mercado futuro. O outro problema é mais complexo e relaciona a inflação e o desemprego, que inflige uma perda social. A perda social é escrita como uma função da taxa de inflação p e a taxa de desemprego u, com diferentes pesos. Em seguida, usando as relações conhecidas entre p, u, e a taxa de inflação esperada π, reescrevemos a função de perda social como uma função de π. A resposta é obtida através da aplicação do cálculo das variações, a fim de encontrar a curva ótima π que minimiza a perda social total ao longo de um determinado intervalo de tempo.
Bastos, Nuno Rafael de Oliveira. "Fractional calculus on time scales - Cálculo fraccional em escalas temporais". Doctoral thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/8566.
Texto completoIntroduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
We introduce a discrete-time fractional calculus of variations on the time scales ℤ and (ℎℤ)!. First and second order necessary optimality conditions are established. Some numerical examples illustrating the use of the new Euler— Lagrange and Legendre type conditions are given. We also give new definitions of fractional derivatives and integrals on time scales via the inverse generalized Laplace transform.
McMahon, Chris. "Calculus of Variations on Time Scales and Its Applications to Economics". TopSCHOLAR®, 2008. http://digitalcommons.wku.edu/theses/370.
Texto completoHariz, Belgacem Khader. "Higher-order Embedding Formalism, Noether’s Theorem on Time Scales and Eringen’s Nonlocal Elastica". Electronic Thesis or Diss., Pau, 2022. https://theses.hal.science/tel-03981833.
Texto completoThe aim of this thesis is to deal with the connection between continuous and discrete versions of a given object. This connection can be studied in two different directions: one going from a continuous setting to a discrete analogue, and in a symmetric way, from a discrete setting to a continuous one. The first procedure is typically used in numerical analysis in order to construct numerical integrators and the second one is typical of continuous modeling for the study of micro-structured materials.In this manuscript, we focus our attention on three distinct problems. In the first part, we propose a general framework precising different ways to derive a discrete version of a differential equation called discrete embedding formalism.More precisely, we exhibit three main discrete associate: the differential, integral or variational structure in both classical and high-order approximations.The second part focuses on the preservation of symmetries for discrete versions of Lagrangian and Hamiltonian systems, i.e., the discrete analogue of Noether's theorem.Finally, the third part applies these results in mechanics, i.e., the problem studied by N. Challamel, Kocsis and Wang called Eringen's nonlocal elastica equation which can beobtained by the continualization method. Precisely, we construct a discrete version of Eringen's nonlocal elastica then we study the difference with Challamel's proposal
Arslan, Aykut. "Discrete Fractional Hermite-Hadamard Inequality". TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1940.
Texto completoKisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.
Texto completoLibros sobre el tema "Time-Scales calculus"
Bohner, Martin y Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9.
Texto completoGeorgiev, Svetlin G. Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0.
Texto completoVariational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.
Buscar texto completoGeorgiev, Svetlin G. Variational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.
Buscar texto completoBohner, Martin y Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.
Buscar texto completoBohner, Martin y Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.
Buscar texto completoBohner, Martin y Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2018.
Buscar texto completoHardy Type Inequalities on Time Scales. Springer, 2016.
Buscar texto completoO'Regan, Donal, Ravi P. Agarwal y Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2016.
Buscar texto completoO'Regan, Donal, Ravi P. Agarwal y Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2018.
Buscar texto completoCapítulos de libros sobre el tema "Time-Scales calculus"
Bohner, Martin y Svetlin G. Georgiev. "Time Scales". En Multivariable Dynamic Calculus on Time Scales, 1–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_1.
Texto completoSeiffertt, John y Donald C. Wunsch. "The Time Scales Calculus". En Evolutionary Learning and Optimization, 49–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03180-9_4.
Texto completoGeorgiev, Svetlin G. "Calculus on Time Scales". En Functional Dynamic Equations on Time Scales, 1–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2_1.
Texto completoBohner, Martin y Allan Peterson. "The Time Scales Calculus". En Dynamic Equations on Time Scales, 1–50. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1_1.
Texto completoGoodrich, Christopher y Allan C. Peterson. "Calculus on Mixed Time Scales". En Discrete Fractional Calculus, 353–414. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25562-0_5.
Texto completoGeorgiev, Svetlin G. "Elements of the Time Scale Calculus". En Integral Equations on Time Scales, 1–75. Paris: Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1_1.
Texto completoBohner, Martin y Svetlin G. Georgiev. "Partial Differentiation on Time Scales". En Multivariable Dynamic Calculus on Time Scales, 303–447. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_6.
Texto completoBohner, Martin y Svetlin G. Georgiev. "Multiple Integration on Time Scales". En Multivariable Dynamic Calculus on Time Scales, 449–515. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_7.
Texto completoBohner, Martin, Gusein Guseinov y Allan Peterson. "Introduction to the Time Scales Calculus". En Advances in Dynamic Equations on Time Scales, 1–15. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9_1.
Texto completoGeorgiev, Svetlin G. "Convolution on Time Scales". En Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, 157–215. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0_3.
Texto completoActas de conferencias sobre el tema "Time-Scales calculus"
Kapcak, Sinan y Ünal Ufuktepe. "Multivariable Calculus on Time Scales". En 2011 International Conference on Computational Science and Its Applications (ICCSA). IEEE, 2011. http://dx.doi.org/10.1109/iccsa.2011.28.
Texto completoGirejko, Ewa, Agnieszka B. Malinowska y Delfim F. M. Torres. "A unified approach to the calculus of variations on time scales". En 2010 Chinese Control and Decision Conference (CCDC). IEEE, 2010. http://dx.doi.org/10.1109/ccdc.2010.5498972.
Texto completoNiu, Haoyu, YangQuan Chen, Lihong Guo y Bruce J. West. "A New Triangle: Fractional Calculus, Renormalization Group, and Machine Learning". En ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-70505.
Texto completo