Literatura académica sobre el tema "Thermodynamic Equilibrium Calculations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Thermodynamic Equilibrium Calculations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Thermodynamic Equilibrium Calculations"
Zhang, Tao y Shuyu Sun. "Thermodynamics-Informed Neural Network (TINN) for Phase Equilibrium Calculations Considering Capillary Pressure". Energies 14, n.º 22 (18 de noviembre de 2021): 7724. http://dx.doi.org/10.3390/en14227724.
Texto completoSundman, Bo y John Ågren. "Computer Applications in the Development of Steels". MRS Bulletin 24, n.º 4 (abril de 1999): 32–36. http://dx.doi.org/10.1557/s0883769400052167.
Texto completoBelov, G. V. "Calculation of Equilibrium Composition of Complex Thermodynamic Systems using Julia Language and Ipopt Library". Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, n.º 3 (136) (septiembre de 2021): 24–45. http://dx.doi.org/10.18698/0236-3933-2021-3-24-45.
Texto completoEwing, Mark E. y Daron A. Isaac. "Thermodynamic Property Calculations for Equilibrium Mixtures". Journal of Thermophysics and Heat Transfer 32, n.º 1 (enero de 2018): 118–28. http://dx.doi.org/10.2514/1.t5144.
Texto completoLothenbach, Barbara. "Thermodynamic equilibrium calculations in cementitious systems". Materials and Structures 43, n.º 10 (17 de abril de 2010): 1413–33. http://dx.doi.org/10.1617/s11527-010-9592-x.
Texto completoFöldényi, Rita y Aurél Marton. "Organisation of the Analytical, Stoichiometric, and Thermodynamic Information for water Chemistry Calculations". Hungarian Journal of Industry and Chemistry 43, n.º 1 (1 de junio de 2015): 33–38. http://dx.doi.org/10.1515/hjic-2015-0006.
Texto completoRamette, Richard W. "REACT: Exploring Practical Thermodynamic and Equilibrium Calculations". Journal of Chemical Education 72, n.º 3 (marzo de 1995): 240. http://dx.doi.org/10.1021/ed072p240.
Texto completoNovák, Josef P., Vlastimil Růžička, Jaroslav Matouš y Jiří Pick. "Liquid-liquid equilibrium. Computation of liquid-liquid equilibrium in terms of an equation of state". Collection of Czechoslovak Chemical Communications 51, n.º 7 (1986): 1382–92. http://dx.doi.org/10.1135/cccc19861382.
Texto completoPelton, A. D. "Thermodynamic databases and equilibrium calculations in metallurgical processes". Pure and Applied Chemistry 69, n.º 5 (1 de enero de 1997): 969–78. http://dx.doi.org/10.1351/pac199769050969.
Texto completoZe-Qing, Wu, Han Guo-Xing y Pang Jin-Qiao. "Opacity Calculations for Non-Local Thermodynamic Equilibrium Mixtures". Chinese Physics Letters 19, n.º 4 (26 de marzo de 2002): 518–20. http://dx.doi.org/10.1088/0256-307x/19/4/321.
Texto completoTesis sobre el tema "Thermodynamic Equilibrium Calculations"
Qu, Jingang. "Acceleration of Numerical Simulations with Deep Learning : Application to Thermodynamic Equilibrium Calculations". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS530.pdf.
Texto completoNumerical simulations are a powerful tool for analyzing dynamic systems, but can be computationally expensive and time-consuming for complex systems with high resolution. Over the past decades, researchers have been striving to accelerate numerical simulations through algorithmic improvements and high-performance computing (HPC). More recently, artificial intelligence (AI) for science is on the rise and involves using AI techniques, specifically machine learning and deep learning, to solve scientific problems and accelerate numerical simulations, having the potential to revolutionize a wide range of fields. The primary goal of this thesis is to speed up thermodynamic equilibrium calculations by means of techniques used to accelerate numerical simulations. Thermodynamic equilibrium calculations are able to identify the phases of mixtures and their compositions at equilibrium and play a pivotal role in many fields, such as chemical engineering and petroleum industry. We achieve this goal from two aspects. One the one hand, we use deep learning frameworks to rewrite and vectorize algorithms involved in thermodynamic equilibrium calculations, facilitating the use of diverse hardware for HPC. On the other hand, we use neural networks to replace time-consuming and repetitive subroutines of thermodynamic equilibrium calculations, which is a widely adopted technique of AI for science. Another focus of this thesis is to address the challenge of domain generalization (DG) in image classification. DG involves training models on known domains that can effectively generalize to unseen domains, which is crucial for deploying models in safety-critical real-world applications. DG is an active area of research in deep learning. Although various DG methods have been proposed, they typically require domain labels and lack interpretability. Therefore, we aim to develop a novel DG algorithm that does not require domain labels and is more interpretable
Zinser, Alexander [Verfasser], Kai [Gutachter] Sundmacher y Achim [Gutachter] Kienle. "Dynamic methods for thermodynamic equilibrium calculations in process simulation and process optimization / Alexander Zinser ; Gutachter: Kai Sundmacher, Achim Kienle". Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2019. http://d-nb.info/1219937207/34.
Texto completoHöglund, Andreas. "Electronic Structure Calculations of Point Defects in Semiconductors". Doctoral thesis, Uppsala universitet, Fysiska institutionen, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7926.
Texto completoBelsito, Danielle L. "Application of Computational Thermodynamic and Solidification Kinetics to Cold Sprayable Powder Alloy Design". Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-dissertations/28.
Texto completoLundholm, Karin. "Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuels". Doctoral thesis, Umeå : Department of Applied Physics and Electronics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1132.
Texto completoBratberg, Johan. "Phase equilibria and thermodynamic properties of high-alloy tool steels : theoretical and experimental approach". Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-453.
Texto completoYamada, Ryo. "Application of Steepest-Entropy-Ascent Quantum Thermodynamics to Solid-State Phenomena". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85866.
Texto completoPh. D.
Many engineering materials have physical and chemical properties that change with time. The tendency of materials to change is quantified by the field of thermodynamics. The first and second laws of thermodynamics establish conditions under which a material has no tendency to change; these conditions are called equilibrium states. When a material is not in an equilibrium state, it is able to change spontaneously. Classical thermodynamics reliably identifies whether a material is susceptible to change, but it is incapable of predicting how change will take place or how fast it will occur. These are kinetic questions that fall outside the purview of thermodynamics. A relatively new theoretical treatment developed by Hatsopoulos, Gyftopoulos, Beretta and others over the past forty years extends classical thermodynamics into the kinetic realm. This framework, called steepest-entropy-ascent quantum thermodynamics (SEAQT), combines the tools of thermodynamics with quantum mechanics through a postulated equation of motion. Solving the equation of motion provides a kinetic description of the path a material will take as it changes from a non-equilibrium state to stable equilibrium. To date, the SEAQT framework has been applied primarily to systems of gases. In this dissertation, solid-state models are employed to extend the SEAQT approach to solid materials. The SEAQT framework is used to predict the thermal expansion of silver, the magnetization of iron, and the kinetics of atomic clustering and ordering in binary solid-solutions as a function of time or temperature. The model makes it possible to predict a unique kinetic path from any arbitrary, non-equilibrium, initial state to a stable equilibrium state. In each application, the approach is tested against experimental data. In addition to reproducing the qualitative kinetic trends in the cases considered, the SEAQT framework shows promise for modeling the behavior of materials far from equilibrium.
Davie, Stuart James. "Relative Free Energies from Non-Equilibrium Simulations: Application to Changes in Density". Thesis, Griffith University, 2014. http://hdl.handle.net/10072/365922.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology
Full Text
Razavi, Seyed Mostafa. "OPTIMIZATION OF A TRANSFERABLE SHIFTED FORCE FIELD FOR INTERFACES AND INHOMOGENEOUS FLUIDS USING THERMODYNAMIC INTEGRATION". University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1481881698375321.
Texto completoMaghsoodloobabakhani, Saheb. "Cristallisation à l'équilibre et hors équilibre d'hydrates mixtes de gaz : Mesures PVTx et modélisation thermodynamique". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEM027.
Texto completoIn this work, in order to investigate the non-equilibrium behaviors of mixed clathrate hydrates, vapor-liquid-hydrate phase equilibria of mixed gas hydrates from CH4-C2H6-C3H8-nC4H10-CO2-N2 are studied. Two different experimental procedures are used: at quick and slow crystallization rates. The aim is to examine the effects of crystallization rate on the final state, either under usual dynamic (quick formation) or steady state conditions (slow formation). Unlike most of the literature data, providing temperature-pressure-vapor composition (PTy) results, this study also furnishes hydrate composition, volume, storage capacity, density, or hydration number and water conversion. At quick crystallization, hydrate volume increases from 2% to 69% according to the gas mixture. Moreover, storage capacity decreases with increasing rate of crystallization. In addition, a thermodynamic model, based on classical van der Waals and Platteuw method and Kihara potential, has been used. A new set of Kihara parameters for propane, based on slow crystallization, has been obtained successfully and compared to the literature.Besides, a review on guest composition in hydrates from experimental results is suggested, based on open literature. Then, the capability of thermodynamic modeling to simulate these rare data has been investigated. While simulation tools are interesting to predict phase equilibria for light molecules, they become less reliable when phase transition occurs in the system, or when heavier molecules are involved. In addition, the use of RAMAN spectroscopy has illustrated phase transition for CO2/C3H8 mixed hydrates under CO2 rich gas conditions.To conclude, the rate of crystallization significantly influences the process of mixed hydrates formation. The use of a thermodynamic flash shows that slow crystallization is necessary to satisfy the thermodynamic equilibrium, and thus increase storage capacity, and optimize hydrate processes
Libros sobre el tema "Thermodynamic Equilibrium Calculations"
1940-, Sandler Stanley I., ed. Models for thermodynamic and phase equilibria calculations. New York: Dekker, 1994.
Buscar texto completoGupta, Roop N. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K. Hampton, Va: Langley Research Center, 1991.
Buscar texto completoN, Gupta Roop y United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30 000 K. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Program, 1991.
Buscar texto completoGordon, Sanford. Computer program for calculation of complex chemical equilibrium compositions and applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Buscar texto completoGordon, Sanford. Computer program for calculation of complex chemical equilibrium compositions and applications. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1994.
Buscar texto completoGordon, Sanford. Computer program for calculation of complex chemical equilibrium compositions and applications. Washington, D.C: NASA, 1994.
Buscar texto completoA, Reno Martin, Gordon Sanford y United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. CET93 and CETPC: An interim updated version of the NASA Lewis computer program for calculating complex chemical equilibria with applications. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1994.
Buscar texto completoCalculations and curve fits of thermodynamic and transport properties for equilibrium air to 30 000 K. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Buscar texto completoCurrier, Robert Patrick. A statistical mechanical group contribution method for calculating thermodynamic properties of fluids. 1987.
Buscar texto completoElectrical Installation Calculations: For Compliance with BS 7671. Blackwell Science Inc, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Thermodynamic Equilibrium Calculations"
Chen, Long-Qing. "Thermodynamic Calculations of Materials Processes". En Thermodynamic Equilibrium and Stability of Materials, 175–239. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-8691-6_8.
Texto completoStateva, Roumiana P. y Georgi St Cholakov. "Challenges in the Modeling of Thermodynamic Properties and Phase Equilibrium Calculations for Biofuels Process Design". En Process Systems Engineering for Biofuels Development, 85–120. Chichester, UK: John Wiley & Sons, Ltd, 2020. http://dx.doi.org/10.1002/9781119582694.ch4.
Texto completoDuan, Yu y Guobin Xu. "Analysis of River Stability in the Middle Reaches of Huaihe River Based on Non-equilibrium Thermodynamicsins". En Lecture Notes in Civil Engineering, 1030–40. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_91.
Texto completoBharti, Anand, Debashis Kundu, Dharamashi Rabari y Tamal Banerjee. "COSMO-SAC: A Predictive Model for Calculating Thermodynamic Properties on a-priori Basis". En Phase Equilibria in Ionic Liquid Facilitated Liquid–Liquid Extractions, 53–90. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315367163-3.
Texto completoRiyahi Malayeri, Kamrooz, Patrik Ölund y Ulf Sjöblom. "Thermodynamic Calculations Versus Instrumental Analysis of Slag-Steel Equilibria in an ASEA–SKF Ladle Furnace". En Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings, 1–11. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2014. http://dx.doi.org/10.1520/stp158020140025.
Texto completoHe, Ruoyu, Guangmin Zhao y Yidong Luo. "Study on the effect of sulfur and silicon dioxide on the reaction of CaO and Na2O with chromium during municipal solid waste incineration based on thermodynamic equilibrium calculation". En Advances in Civil Engineering and Environmental Engineering, Volume 2, 281–86. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003383031-43.
Texto completoClugston, Michael, Malcolm Stewart y Fabrice Birembaut. "Chemical Equilibrium". En Making the Transition to University Chemistry. Oxford University Press, 2021. http://dx.doi.org/10.1093/hesc/9780198757153.003.0006.
Texto completoAtkins, Peter, Julio de Paula y David Smith. "The origin of thermodynamic properties". En Elements of Physical Chemistry. Oxford University Press, 2016. http://dx.doi.org/10.1093/hesc/9780198727873.003.0072.
Texto completoSemeshkin, Vitalii y Radion Cherkez. "RELATIONSHIP OF NON-EQUILIBRIUM THERMODYNAMICS IN THE HETEROGENEOUS PERMEABLE THERMOELEMENTS". En Science, technology and innovation in the modern world. Publishing House “Baltija Publishing”, 2023. http://dx.doi.org/10.30525/978-9934-26-364-4-1.
Texto completo"Chapter 11 | Chemical Equilibrium Calculations". En The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation - Chetah® Version 11.0, 77–84. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2020. http://dx.doi.org/10.1520/ds51hol20200011.
Texto completoActas de conferencias sobre el tema "Thermodynamic Equilibrium Calculations"
Hurley, C. D., M. Whiteman y C. W. Wilson. "The Calculation of Thermodynamic Non Equilibrium Combustion Product Compositions". En ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-275.
Texto completoZimmer, A. T. y P. Biswas. "336. Thermodynamic Equilibrium Calculations as an Occupational Assessment Tool: Welding Alloy Examples". En AIHce 1998. AIHA, 1999. http://dx.doi.org/10.3320/1.2762736.
Texto completoZhao, Baofeng, Li Sun, Xiaodong Zhang, Lei Chen, Jie Zhang, Guangfan Meng y Xiangmei Meng. "Thermodynamic Equilibrium Analysis of Rice Husk Pyrolysis". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51052.
Texto completoHosokawa, Yoshifumi. "Models for chloride ion bindings in hardened cement paste using thermodynamic equilibrium calculations". En 2nd International RILEM Symposium on Advances in Concrete through Science and Engineering. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580028.025.
Texto completoPaolini, Christopher P. y Subrata Bhattacharjee. "The IGE Model: An Extension of the Ideal Gas Model to Include Chemical Composition as Part of the Equilibrium State". En ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40762.
Texto completoDepraz, Se´bastien, Philippe Rivie`re, Marie-Yvonne Perrin y Anouar Soufiani. "Band Models for Radiative Transfer in Non-LTE Diatomic Molecules of CO2-N2 Plasmas". En 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22301.
Texto completoRowe, A., M. Karunaratne y R. C. Thomson. "NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy". En AM-EPRI 2013, editado por D. Gandy y J. Shingledecker. ASM International, 2013. http://dx.doi.org/10.31399/asm.cp.am-epri-2013p0412.
Texto completoKermani, Mohammad J. y Andrew G. Gerber. "Thermodynamic and Aerodynamic Loss Evaluation of Supersonic Nucleating Steam With Shocks". En ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31087.
Texto completoKorotkikh, A. y I. Sorokin. "EFFECT OF BORON ON THE COMBUSTION CHARACTERISTICS OF METALLIZED HIGH-ENERGY MATERIALS". En 9TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap9a-31.
Texto completoWu, Bei y Hui Zhang. "Vapor Transport Controlled Process Models for AlN Bulk Sublimation Growth". En ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56564.
Texto completoInformes sobre el tema "Thermodynamic Equilibrium Calculations"
Kotlar, Anthony J. The Proper Interpretation of the Internal Energy of Formation Used in Thermodynamic Equilibrium Calculations. Fort Belvoir, VA: Defense Technical Information Center, julio de 1992. http://dx.doi.org/10.21236/ada252369.
Texto completoCrowley, David, Yitzhak Hadar y Yona Chen. Rhizosphere Ecology of Plant-Beneficial Microorganisms. United States Department of Agriculture, febrero de 2000. http://dx.doi.org/10.32747/2000.7695843.bard.
Texto completoTrowbridge, L. D. y J. M. Leitnaker. SOLGAS refined: A computerized thermodynamic equilibrium calculation tool. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10137601.
Texto completoTerah, E. I. Practical classes in general chemistry for students of specialties «General Medicine», «Pediatrics», «Dentistry». SIB-Expertise, abril de 2022. http://dx.doi.org/10.12731/er0556.13042022.
Texto completoTrowbridge, L. D. y J. M. Leitnaker. A spreadsheet-coupled SOLGAS: A computerized thermodynamic equilibrium calculation tool. Revision 1. Office of Scientific and Technical Information (OSTI), julio de 1995. http://dx.doi.org/10.2172/106516.
Texto completo