Tesis sobre el tema "Thermo-Kinetics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 16 mejores tesis para su investigación sobre el tema "Thermo-Kinetics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Muralidas, Pooja. "Thermo-gravimetric Analysis of Corrosion Kinetics of Ti and Zr Coated P91 Steel". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/2057.
Texto completoTita, Bertrand Asongwe. "Waste-to-Energy : A study on Reaction Kinetics of Tropical Wood Sawdust". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-9746.
Texto completoBrown, Tracy. "Investigation of the rheology, cure kinetics, and thermo-mechanical properties of GRC-A loaded with zeolites". DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2010. http://digitalcommons.auctr.edu/dissertations/256.
Texto completoAl-Salem, S. "Thermo-Chemical Treatment (TCT) of polymers in multi-scale reactors : a kinetics and Life Cycle Assessment (LCA) study". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1394441/.
Texto completoBhagavatula, Abhijit. "THERMO-CHEMICAL CONVERSION OF COAL-BIOMASS BLENDS: KINETICS MODELING OF PYROLYSIS, MOVING BED GASIFICATION AND STABLE CARBON ISOTOPE ANALYSIS". UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/43.
Texto completoCouchet, Clélia. "New insights in understanding the interaction between recrystallization and phase transformation during intercritical annealing in DP steels". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0019.
Texto completoThe formation of microstructures is a crucial step for steelmakers. In the case of DP steels, used for automotive construction, this formation takes place during intercritical annealing after cold-rolling. During this thermal treatment, after the heating step, the microstructure is made of recrystallized ferrite and austenite. During cooling, the austenite partially transforms into ferrite and then into martensite to reach the expected final ferrite/martensite microstructure. The austenitization step is therefore crucial for the manufacturers of these steels, to control the final phase fractions and sizes and, consequently, their mechanical properties. Numerous studies show that the heating rate controls the transformation kinetics and the morphology of the austenite ("necklace" or "banded"), but the underlying mechanisms remains a bone of contention. The overlap between ferrite recrystallization and austenite formation is often made responsible for these effects, through different mechanisms. Using recent advances in in situ experiments on synchrotron beamlines, this PhD proposes a new insight in the understanding of the interactions between ferrite recrystallization and austenite formation and develops a predictive model for the austenite formation kinetics. The main experimental development of this thesis is a new coupled time-resolved analysis technique, based on in situ High-Energy X-Ray Diffraction to track recrystallization and phase transformations during the annealing phase, including at high heating speeds. Our new method, called Isolated Diffraction Spot Tracking (IDST), is first validated to study recrystallization on model ferritic steels. These in situ measurements are supplemented by observations of microstructures after interrupted treatments in microscopy (optical, Scanning Electron Microscopy and Transmission Electron Microscopy), and from local chemistry measurements (Energy-Dispersive X-ray Spectroscopy and Wavelength Dispersion Spectroscopy)We first reproduce experiments to study the influence of the heating rate on the studied steel during the intercritical annealing. In such experiments, the overlap between ferrite recrystallization and austenite formation is governed by the heating rate. To go further, we designed experiments to decorrelate the effect of the heating rate and this overlap. During these, the heating rate is fixed to maintain the same conditions for thermo-activated mechanisms, but the niobium micro-alloying and lower cold-rolling ratio are used to delay ferrite recrystallization. These experiments show unambiguously that austenite transformation kinetics is not controlled by the recrystallization, but by the sole thermodynamic condition of interfaces and maybe by the diffusion distance in the microstructures. Finally, we propose a detailed thermo-kinetics analysis of the mechanisms of austenite formation during the intercritical annealing based on DICTRA/Thermo-Calc simulations and on our experimental work. The effect of minor alloying elements on the austenite growth kinetics is investigated. This work finally proposes new predictive models for austenite formation during the intercritical annealing. This PhD work finally shows no significant effect of the concomitance of the two studied mechanisms on the austenite formation kinetics along the heating stage. We demonstrate that the austenite formation kinetics is diffusion-controlled. The difference in austenite formation kinetics along the holding stage is explained by microstructural considerations, affecting the diffusion distances
Maach, Nicolas. "Modélisation cinétique de l'hydratation en systèmes dilués des aluminates de calcium : Des mécanismes chimiques aux modélisations par les Population Balance Equations". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI127.
Texto completoThis work focuses on the kinetic modeling of calcium aluminate cements (CAC) to improve the knowledge and the control of these chemical systems. The kinetic aspect of this modeling is essential since their hydration goes through several metastable states (e.g. CAC conversion). Kinetic models integrated over a volume of mortar paste already exist yet they require appropriate kinetic laws. Unfortunately, these laws are poorly identified for CACs and this is what motivates the creation of a model for mineral suspensions. The simulation of suspension allows the evaluation of these kinetic laws without the interference of granular stacking or porous network assumptions. The created model is a thermo-chemical model where the molar quantities are driven by differential-algebraic equations. The particle size information is borne by Population Balance Equations allowing to manage each physic-chemical phenomenon (e.g. Nucleation, Dissolution, Growth, Agglomeration...) independently and in a flexible way. The evaluation of this model highlighted the key role of aluminium hydroxide formation in CAC hydration. This reaction converts the excess of aluminate ions into the deficient hydroxide ion which are required by most of the hydrates. This work demonstrated that aluminium hydroxide formation is complex to explain experimentally and to model. Nevertheless, the use of prehydroxylated precursors allows a partial modeling of this reaction
Wessman, Sten. "Applications of Computational Thermodynamics and Kinetics on Transformations in Stainless Steels". Doctoral thesis, KTH, Skolan för industriell teknik och management (ITM), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121337.
Texto completoQC 20130429
Souza, Luiz Augusto Gesteira de. "Cálculos usando métodos de estrutura eletrônica na obtenção de parâmetros cinéticos e termoquímicos". Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/46/46132/tde-08022018-090432/.
Texto completoCalculations using methods of electronic structure(Hartree-Fock, second order Moller-Plesset and DFT: B3LYP) had been effected through the Gaussian98 program in microcomputers and workstations, with the objective to elucidate the unimolecular decomposition channels of diethyl ether in gaseous phase. These results also had been compared to those obtained by the methodology based in statistical mechanics through Benson\'s approach. Sixteen primary ways, which, four occur through the break of simple bonds C-O, C-C,C(1)-H, C(2)-H, and twelve occur through cyclical transistion states, which eliminate products as hydrogen, ethene, acetaldehyde, ethane, ethyl alcohol, methyl ethyl ether, methane, some carbenes and also diradicals. These products had been considered to the determination of the activation barriers, enthalpies of reaction, entropies of reaction and free energy of Gibbs of reaction. Primary ways occurring through the break of bonds, had not reproduced experimental values for the activation barriers, however they had reproduced in a significant way, values of the enthalpy of the reaction. Elimination of ethene and ethyl alcohol, occurring by a transition state of four centers, presented the lowest activation barrier. Acetaldehyde and ethane elimination occurring through four centers, presented a high significantly barrier, but on the other hand it presented the smallest enthalpy, lightly exothermic above -0,8 kcal.mol-1. Eliminations 1,2 of methane and carbene occurring through three centers, together with the elimination 1,1 of hydrogen and carbene through three centers, elimination 2,2 of hydrogen and carbene through three centers and elimination 1,4 of hydrogen, acetaldehyde and ethene through six centers, had presented relatively next activation barriers, showing that they are competitive among themselves. The computed values of the channels that occur through cyclical transition states had been compared with the available experimental results and the trustworthiness of this computational boarding for the study of unimolecular reactions in multi-channel had been dicussed. Determination of thermochemical parameters, as heat of formation for radicalar species of the primary channel of decomposition and some alcoxyde radicais, together with the estimative of the electronic and protonic affinities,( with the ab initio Gaussian 2 boarding which estimate very precise eletronic energies ) and their results had been compared with the available experimental values and with values gotten through energies of bond and Benson\'s additivity rule.
Duchatel, Xavier. "Dégradation thermo-oxydante du poly(fluorure de vinylidène)". Rouen, 1996. http://www.theses.fr/1996ROUES009.
Texto completoRosenhaim, Raul. "Avaliação das Propriedades Fluído-dinâmicas e Estudo Cinético por Calorimetria Exploratória Diferencial Pressurizada (PDSC) de Biodiesel Etílico Derivado de óleo de fritura usado". Universidade Federal da Paraíba, 2009. http://tede.biblioteca.ufpb.br:8080/handle/tede/7166.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The present work aimed at investigating the biodiesel issuing from the transesterification of used frying oil with ethanol, via alkaline catalysis. Such investigation covers its thermo-oxidative stability during heating (thermal analysis and rheological properties) as well the kinetic profiles of the samples in the best oxidative induction time by the technique of Pressurized Differential Scanning Calorimetry (PDSC). The behavior of such biodiesel, as part of binary blends with fossil diesel at the proportions of 3, 5, 10, 25, 50, 75 and 100%, was also studied. The biodiesel synthesis used the ethanol route and was carried out under the following conditions: oil/alcohol molar ratio of 1:6 (m/m), 1 % de KOH, temperature of 32 °C, washing with 0.1M HCl and hot water. The reaction yield, determined by means of a mass balance aided by the technique of gas chromatography coupled to mass spectrometry, was of 90.56% and the ester content was of 99.56%. According to the physicochemical analyses, all the specifications for the biodiesel and blends met the requirements from Technical Regulation # 7 from the Brazilian National Agency of Petroleum, Natural Gas and Biofuels, with the exceptions of the odixative induction time (1.72 h) and kinematic viscosity (6.10 mm2s-1), which displayed values outside the limits established by the standard. In the thermal study, the thermogravimetric curves showed that the biodiesel blends in diesel are more volatile than the biodiesel derived from used frying oil (B100), whereas at lower concentrations (3, 5, 10 and 25%) are similar to fossil diesel. At higher concentrations (50 and 75%) the blends presented lower volatility and higher thermal stability in relation to fossil diesel and thus, biodiesel and its more concentrated blends showed higher safety in relation to transport, storage, handling and utilization. The study of the fluid dynamic properties of biodiesel and its blends showed that all the samples behave as Newtonian fluids at the studied (10, 25 and 40 ºC) temperatures. Also the results of cloud point, pour point and cold filter plugging point showed that the behavior of the blends with 3, 5 and 10% are similar to fossil diesel, therefore at these concentrations biodiesel acts as a lubricity additive to fossil diesel. The study by Pressurized Differential Scanning Calorimetry (PDSC) in the dynamic mode and the Rancimat technique revealed that the best antioxidant for the storage of biodiesel is BHT at the concentration of 2500 ppm. The determination of the kinetic parameters by the isothermal PDSC technique allowed determining the theoretical value of the shelf life of used frying oil biodiesel with 2500 ppm of the antioxidant BHT. Therefore, used frying oil biodiesel and its blends B3, B5, B10, B25, B50 and B75 may be used as an alternative source of biofuels.
O presente trabalho buscou investigar o biodiesel proveniente da transesterificação do óleo de fritura usado com álcool etílico, via catálise básica, e elucidar a sua estabilidade termo-oxidativa durante o aquecimento (análise térmica e propriedade reologicas) e estudar o perfil cinético da amostra com o melhor tempo de indução oxidativa pela técnica de calorimetria exploratória diferencial pressurizada (PDSC). Também, foi observado o comportamento do referido biodiesel, inserido em misturas binárias com o diesel fóssil nas proporções de 3, 5, 10, 25, 50, 75 e 100% também foi estudada. A síntese do biodiesel na rota etanólica processou-se sob condições de: razão molar óleo-álcool de 1:6 (m/m), 1 % de KOH, temperatura de 32 °C, lavagem com HCl 0,1 M e água quente. O rendimento reacional determinado por balanço de massa com auxilio da técnica de cromatografia gasosa acoplada a espectrometria de massa, foi de 90,56 %, com teor de esteres de 99,56 %. Nas análises físicoquímicas, todos as especificações para ambos biodiesel e blendas satisfizeram as exigências dos limites permitidos pelo Regulamento Técnico nº 7 da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Com exceção do tempo de indução oxidativa (1,72 h) e a viscosidade cinemática (6,10 mm2s-1) que apresentaram valores fora dos limites estabelecidos pela norma. No estudo térmico, as curvas termogravimétricas evidenciaram que as blendas de biodiesel em diesel são mais voláteis em relação ao biodiesel derivado de óleo de fritura usado (B100) e em baixas concentrações (3, 5, 10 e 25%) se assemelham ao diesel fóssil. Em concentrações mais elevadas (50 e 75%) as blendas apresentam menor volatilidade e maior estabilidade térmica em relação ao diesel fóssil, e, portanto, o biodiesel e suas blendas mais concentradas apresentam maior segurança em relação ao transporte, armazenagem, manuseio e utilização. O estudo das propriedades fluído-dinâmicas do biodiesel e suas blendas, demostraram que todas as amostras comportam como fluídos newtonianos a temperatura (10, 25 e 40 ºC) e que tanto os resultados de ponto de nevoa, fluidez e ponto de entupimento de filtro a frio, apresentaram comportamento para as blendas 3, 5 e 10% semelhantes ao observado para o diesel fossil, e, portanto nestas concentrações o biodiesel atua como um aditivo de lubricidade do óleo diesel fossil. O estudo por calorimetria exploratória diferencial pressurizada no modo dinâmico e a técnica de rancimat revelou que o melhor antioxidante para o armazenamento do biodiesel é o BHT com concentração de 2500 ppm. A determinação dos parâmetros cinéticos pela técnica de PDSC isotérmica foi possível determinar teoricamente o tempo de vida de prateleira do biodiesel derivado de óleo de fritura usado com 2500 ppm do antioxidante BHT. Então, o biodiesel de fritura usado e blendas B3, B5, B10, B25, B50 e B75 podem ser utilizados como uma fonte alternativa de biocombustíveis.
Tzu-Meng, Lin y 林子孟. "Study on photopolymerization kinetics and thermo-physics property of UV curable resins". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/27970029930583350705.
Texto completo國立臺北科技大學
化學工程系碩士班
91
Formulation of UV curable resins used in this study contains aliphatic polyester based urethane diacrylate oligomer, tripropylene glycol diacrylate as difunctional monomer diluter and photoinitiator. In this study, concentration of photoinitiator and monomer diluter and clay in the formulation was varied separately to investigate its effect on the curing behavior and the thermo- physical properties of cured film. FTIR was employed to monitor the UV curing reaction and find the radiating time for complete reaction. UV Curing kinetic study was carried out on Differential Photo Calorimeter. Thermal properties of UV cured film were determined by DSC, TGA and TMA . Surface hardness was measured by micro-scratch. Data from Photo-DSC study pointed out that increase the concentration of photoinitiator in the formulation accompanied with an increase in curing rate, and the cured films showed a lower decomposition temperature, glass transition temperature and surface hardness. When the concentration of diluter in the formulation was increased, curing rate also increased; the cured films showed a higher decomposition temperature and glass transition temperature. The following time (t) verse conversion ratio (α) equation is used for kinetic study where k is reaction constant, m is autoacceleration parameter, n is reaction order.
Zhanshayeva, Lyazzat. "Towards macroscopic modeling of electro-thermo-mechanical couplings in PEDOT/PSS: Modeling of moisture absorption kinetics". Thesis, 2018. http://hdl.handle.net/10754/628057.
Texto completoLourens, Leon. "Reduction of iron ore fines in the Ifcon furnace". Diss., 2003. http://hdl.handle.net/2263/27383.
Texto completoDissertation (MEng (Metallurgical Engineering))--University of Pretoria, 2008.
Materials Science and Metallurgical Engineering
unrestricted
Sello, Maitse P. "The laves phase embrittlement of ferritic stainless steel type aisi 441". Thesis, 2010. http://hdl.handle.net/2263/25481.
Texto completoThesis (PhD)--University of Pretoria, 2010.
Materials Science and Metallurgical Engineering
unrestricted
Maier, Friedrich. "Improved tracer techniques for georeservoir applications". Thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5D95-9.
Texto completo