Artículos de revistas sobre el tema "Therapeutic potential of anticancer immunotoxins"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Therapeutic potential of anticancer immunotoxins".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Choudhary, Swati, Mrudula Mathew y Rama S. Verma. "Therapeutic potential of anticancer immunotoxins". Drug Discovery Today 16, n.º 11-12 (junio de 2011): 495–503. http://dx.doi.org/10.1016/j.drudis.2011.04.003.
Texto completoAhmad, Zuhaida Asra, Swee Keong Yeap, Abdul Manaf Ali, Wan Yong Ho, Noorjahan Banu Mohamed Alitheen y Muhajir Hamid. "scFv Antibody: Principles and Clinical Application". Clinical and Developmental Immunology 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/980250.
Texto completoOszajca, Katarzyna, Łukasz Wieteska, Magdalena Cybula y Janusz Szemraj. "The assessment of prokaryotic addictive modules’ activity in the context of seeking novel immunotoxins". Postępy Polskiej Medycyny i Farmacji 5 (26 de junio de 2017): 59–63. http://dx.doi.org/10.5604/01.3001.0011.6195.
Texto completoStone, Marvin J. "Immunotoxins as Potential Anticancer Agents". Baylor University Medical Center Proceedings 3, n.º 4 (octubre de 1990): 35–37. http://dx.doi.org/10.1080/08998280.1990.11929736.
Texto completoPincus, Seth H. "Therapeutic potential of anti-HIV immunotoxins". Antiviral Research 33, n.º 1 (octubre de 1996): 1–9. http://dx.doi.org/10.1016/s0166-3542(96)00995-3.
Texto completoKawakami, Koji, Oumi Nakajima, Ryuichi Morishita y Ryozo Nagai. "Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties". Scientific World JOURNAL 6 (2006): 781–90. http://dx.doi.org/10.1100/tsw.2006.162.
Texto completoWeldon, John E., Laiman Xiang, Oleg Chertov, Inger Margulies, Robert J. Kreitman, David J. FitzGerald y Ira Pastan. "A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity". Blood 113, n.º 16 (16 de abril de 2009): 3792–800. http://dx.doi.org/10.1182/blood-2008-08-173195.
Texto completoNarbona, Javier, Rubén G. Gordo, Jaime Tomé-Amat y Javier Lacadena. "A New Optimized Version of a Colorectal Cancer-Targeted Immunotoxin Based on a Non-Immunogenic Variant of the Ribotoxin α-Sarcin". Cancers 15, n.º 4 (9 de febrero de 2023): 1114. http://dx.doi.org/10.3390/cancers15041114.
Texto completoBalalaeva, I. V., E. A. Sokolova, A. D. Puzhikhina, A. A. Brilkina y S. M. Deyev. "Spheroids of HER2-Positive Breast Adenocarcinoma for Studying Anticancer Immunotoxins In Vitro". Acta Naturae 9, n.º 1 (15 de marzo de 2017): 38–44. http://dx.doi.org/10.32607/20758251-2017-9-1-38-44.
Texto completoRuiz-de-la-Herrán, Javier, Jaime Tomé-Amat, Rodrigo Lázaro-Gorines, José G. Gavilanes y Javier Lacadena. "Inclusion of a Furin Cleavage Site Enhances Antitumor Efficacy against Colorectal Cancer Cells of Ribotoxin α-Sarcin- or RNase T1-Based Immunotoxins". Toxins 11, n.º 10 (12 de octubre de 2019): 593. http://dx.doi.org/10.3390/toxins11100593.
Texto completoSanz, Laura, Raquel Ibáñez-Pérez, Patricia Guerrero-Ochoa, Javier Lacadena y Alberto Anel. "Antibody-Based Immunotoxins for Colorectal Cancer Therapy". Biomedicines 9, n.º 11 (19 de noviembre de 2021): 1729. http://dx.doi.org/10.3390/biomedicines9111729.
Texto completoLee, Ji Won, Hyun Jung Kim y Kyun Heo. "Therapeutic aptamers: developmental potential as anticancer drugs". BMB Reports 48, n.º 4 (30 de abril de 2015): 234–37. http://dx.doi.org/10.5483/bmbrep.2015.48.4.277.
Texto completoToole, Bryan, Shibnath Ghatak y Suniti Misra. "Hyaluronan Oligosaccharides as a Potential Anticancer Therapeutic". Current Pharmaceutical Biotechnology 9, n.º 4 (1 de agosto de 2008): 249–52. http://dx.doi.org/10.2174/138920108785161569.
Texto completoPanigrahy, Dipak, Lucy Q. Shen, Mark W. Kieran y Arja Kaipainen. "Therapeutic potential of thiazolidinediones as anticancer agents". Expert Opinion on Investigational Drugs 12, n.º 12 (diciembre de 2003): 1925–37. http://dx.doi.org/10.1517/13543784.12.12.1925.
Texto completoYing, Hua-Zhong, Chen-Huan Yu, Hao-Kun Chen, Huan-Huan Zhang, Jie Fang, Fang Wu y Wen-Ying Yu. "Quinonoids: Therapeutic Potential for Lung Cancer Treatment". BioMed Research International 2020 (7 de abril de 2020): 1–13. http://dx.doi.org/10.1155/2020/2460565.
Texto completoGuerrero-Ochoa, Patricia, Raquel Ibáñez-Pérez, Germán Berbegal-Pinilla, Diederich Aguilar, Isabel Marzo, Francisco Corzana, Martha Minjárez-Sáenz et al. "Preclinical Studies of Granulysin-Based Anti-MUC1-Tn Immunotoxins as a New Antitumoral Treatment". Biomedicines 10, n.º 6 (24 de mayo de 2022): 1223. http://dx.doi.org/10.3390/biomedicines10061223.
Texto completoÇetinkaya, Melisa y Yusuf Baran. "Therapeutic Potential of Luteolin on Cancer". Vaccines 11, n.º 3 (27 de febrero de 2023): 554. http://dx.doi.org/10.3390/vaccines11030554.
Texto completoAhmed, Salman, Haroon Khan, Michael Aschner, Hamed Mirzae, Esra Küpeli Akkol y Raffaele Capasso. "Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects". International Journal of Molecular Sciences 21, n.º 16 (6 de agosto de 2020): 5622. http://dx.doi.org/10.3390/ijms21165622.
Texto completoBolhassani, Azam y Farnaz Zahedifard. "Therapeutic live vaccines as a potential anticancer strategy". International Journal of Cancer 131, n.º 8 (20 de junio de 2012): 1733–43. http://dx.doi.org/10.1002/ijc.27640.
Texto completoTovmasyan, Artak, Romulo S. Sampaio, Mary-Keara Boss, Jacqueline C. Bueno-Janice, Bader H. Bader, Milini Thomas, Julio S. Reboucas et al. "Anticancer therapeutic potential of Mn porphyrin/ascorbate system". Free Radical Biology and Medicine 89 (diciembre de 2015): 1231–47. http://dx.doi.org/10.1016/j.freeradbiomed.2015.10.416.
Texto completoNandini, Pathak, Rani Anju, Singh Chhaya, Chauhan Neha y Singh Raj. "Fermented Foods: The Pharmacological and Anticancer Therapeutic Potential". International Journal of Zoological Investigations 08, n.º 02 (2022): 613–22. http://dx.doi.org/10.33745/ijzi.2022.v08i02.075.
Texto completoGallagher, W. J. y M. W. Burk. "Monoclonal antibody-ricin a chain conjugates (immunotoxins): Potential therapeutic agents for human colon carcinoma". Journal of Surgical Research 40, n.º 2 (febrero de 1986): 159–66. http://dx.doi.org/10.1016/0022-4804(86)90118-6.
Texto completoLehman, H. P., U. Zangemeister-Wittke, E. J. Wawrzynczak, A. Collinson, R. Waibel y R. A. Stahel. "Cytotoxicity and therapeutic potential of immunotoxins recognizing different antigens of small cell lung cancer". Lung Cancer 7 (enero de 1991): 186. http://dx.doi.org/10.1016/0169-5002(91)92044-j.
Texto completoBannu, Saira M., Dakshayani Lomada, Surendra Gulla, Thummala Chandrasekhar, Pallu Reddanna y Madhava C. Reddy. "Potential Therapeutic Applications of C-Phycocyanin". Current Drug Metabolism 20, n.º 12 (20 de enero de 2020): 967–76. http://dx.doi.org/10.2174/1389200220666191127110857.
Texto completoHussain, Hidayat, Ivan R. Green, Muhammad Saleem, Muhammad Liaquat Raza y Mamona Nazir. "Therapeutic Potential of Iridoid Derivatives: Patent Review". Inventions 4, n.º 2 (16 de mayo de 2019): 29. http://dx.doi.org/10.3390/inventions4020029.
Texto completoAaghaz, Shams, Vivek Gohel y Ahmed Kamal. "Peptides as Potential Anticancer Agents". Current Topics in Medicinal Chemistry 19, n.º 17 (19 de septiembre de 2019): 1491–511. http://dx.doi.org/10.2174/1568026619666190125161517.
Texto completoHagerty, Brendan L., Guillaume J. Pegna, Jian Xu, Chin-Hsien Tai y Christine Alewine. "Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors". Biomolecules 10, n.º 7 (28 de junio de 2020): 973. http://dx.doi.org/10.3390/biom10070973.
Texto completoSzczepanek, Joanna, Monika Skorupa y Andrzej Tretyn. "MicroRNA as a Potential Therapeutic Molecule in Cancer". Cells 11, n.º 6 (16 de marzo de 2022): 1008. http://dx.doi.org/10.3390/cells11061008.
Texto completoMezo, Gabor, Marilena Manea, Ildiko Szabo, Borbala Vincze y Magdolna Kovacs. "New Derivatives of GnRH as Potential Anticancer Therapeutic Agents". Current Medicinal Chemistry 15, n.º 23 (1 de octubre de 2008): 2366–79. http://dx.doi.org/10.2174/092986708785909157.
Texto completoKamran, Sareh, Ajantha Sinniah, Mahfoudh A. M. Abdulghani y Mohammed Abdullah Alshawsh. "Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review". Cancers 14, n.º 5 (22 de febrero de 2022): 1100. http://dx.doi.org/10.3390/cancers14051100.
Texto completoTeixeira, Thaiz Rodrigues, Gustavo Souza dos Santos, Lorene Armstrong, Pio Colepicolo y Hosana Maria Debonsi. "Antitumor Potential of Seaweed Derived-Endophytic Fungi". Antibiotics 8, n.º 4 (31 de octubre de 2019): 205. http://dx.doi.org/10.3390/antibiotics8040205.
Texto completoReang, Jurnal, Prabodh Chander Sharma, Vijay Kumar Thakur y Jaseela Majeed. "Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer". Biomolecules 11, n.º 8 (31 de julio de 2021): 1130. http://dx.doi.org/10.3390/biom11081130.
Texto completoAlven, Sibusiso, Xhamla Nqoro, Buhle Buyana y Blessing A. Aderibigbe. "Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer". Pharmaceutics 12, n.º 5 (29 de abril de 2020): 406. http://dx.doi.org/10.3390/pharmaceutics12050406.
Texto completoLombrea, Adelina, Alexandra Denisa Scurtu, Stefana Avram, Ioana Zinuca Pavel, Māris Turks, Jevgeņija Lugiņina, Uldis Peipiņš, Cristina Adriana Dehelean, Codruta Soica y Corina Danciu. "Anticancer Potential of Betulonic Acid Derivatives". International Journal of Molecular Sciences 22, n.º 7 (1 de abril de 2021): 3676. http://dx.doi.org/10.3390/ijms22073676.
Texto completoGovindaraj, Jayamathi. "A review on the therapeutic potential of Banana flower". Bioinformation 18, n.º 4 (30 de abril de 2022): 349–53. http://dx.doi.org/10.6026/97320630018349.
Texto completoKronke, M., JM Depper, WJ Leonard, ES Vitetta, TA Waldmann y WC Greene. "Adult T cell leukemia: a potential target for ricin A chain immunotoxins". Blood 65, n.º 6 (1 de junio de 1985): 1416–21. http://dx.doi.org/10.1182/blood.v65.6.1416.bloodjournal6561416.
Texto completo殷, 方田. "Regulatory T Cells as Potential Therapeutic Targets for Anticancer Therapy". Advances in Clinical Medicine 12, n.º 10 (2022): 9267–72. http://dx.doi.org/10.12677/acm.2022.12101340.
Texto completoG. Ranieri y G. Gasparini. "Angiogenesis and Angiogenesis Inhibitors: a New Potential Anticancer Therapeutic Strategy". Current Drug Target - Immune, Endocrine & Metabolic Disorders 1, n.º 3 (1 de noviembre de 2001): 241–53. http://dx.doi.org/10.2174/1568008013341073.
Texto completoCatanzaro, Elena, Cinzia Calcabrini, Eleonora Turrini, Piero Sestili y Carmela Fimognari. "Nrf2: a potential therapeutic target for naturally occurring anticancer drugs?" Expert Opinion on Therapeutic Targets 21, n.º 8 (10 de julio de 2017): 781–93. http://dx.doi.org/10.1080/14728222.2017.1351549.
Texto completoKuriakose, Robin K., Rakesh C. Kukreja y Lei Xi. "Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs". Oxidative Medicine and Cellular Longevity 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/8139861.
Texto completoAlshehri, Mohammed M., Javad Sharifi-Rad, Jesús Herrera-Bravo, Evelyn L. Jara, Luis A. Salazar, Dorota Kregiel, Yadav Uprety et al. "Therapeutic Potential of Isoflavones with an Emphasis on Daidzein". Oxidative Medicine and Cellular Longevity 2021 (9 de septiembre de 2021): 1–15. http://dx.doi.org/10.1155/2021/6331630.
Texto completoKumar, Rajnish, Chanchal Singh, Avijit Mazumder, Salahuddin, Md Mustaqeem Abdullah, Vivek Kumar y Pavan Prakash Giri. "Synthetic Approach to Potential Anticancer Benzimidazole Derivatives: A Review". Mini-Reviews in Medicinal Chemistry 22, n.º 9 (mayo de 2022): 1289–304. http://dx.doi.org/10.2174/1389557521666211001122118.
Texto completoJin, Jun-O., Pallavi Singh Chauhan, Ananta Prasad Arukha, Vishal Chavda, Anuj Dubey y Dhananjay Yadav. "The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles". Marine Drugs 19, n.º 5 (10 de mayo de 2021): 265. http://dx.doi.org/10.3390/md19050265.
Texto completoFakhri, Sajad, Sadaf Abdian, Seyed Zachariah Moradi, Blake E. Delgadillo, Carmela Fimognari y Anupam Bishayee. "Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus". Marine Drugs 20, n.º 10 (30 de septiembre de 2022): 625. http://dx.doi.org/10.3390/md20100625.
Texto completoHasan, Mohammad Raghibul, Bader Saud Alotaibi, Ziyad Mohammed Althafar, Ahmed Hussain Mujamammi y Jafar Jameela. "An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: “Elixir of Life”". Molecules 28, n.º 3 (25 de enero de 2023): 1193. http://dx.doi.org/10.3390/molecules28031193.
Texto completoPalkina, Kseniia A., Daria A. Ipatova, Ekaterina S. Shakhova, Anastasia V. Balakireva y Nadezhda M. Markina. "Therapeutic Potential of Hispidin—Fungal and Plant Polyketide". Journal of Fungi 7, n.º 5 (22 de abril de 2021): 323. http://dx.doi.org/10.3390/jof7050323.
Texto completoDong, Wenjuan, Hu Wang, Hailin Liu, Chunqiao Zhou, Xuelin Zhang, Song Wang y Lin He. "Potential of Black Phosphorus in Immune-Based Therapeutic Strategies". Bioinorganic Chemistry and Applications 2022 (11 de julio de 2022): 1–18. http://dx.doi.org/10.1155/2022/3790097.
Texto completoLiubota, R. V., Zh P. Yakovets, R. I. Vereshchako, M. F. Anikusko y I. I. Liubota. "Clinical significance of anticancer vaccines (literature review)". Practical oncology 4, n.º 2 (19 de agosto de 2021): 14–24. http://dx.doi.org/10.22141/2663-3272.4.2.2021.238669.
Texto completoJo, Hyein, Kyeonghee Shim y Dooil Jeoung. "The Potential of Senescence as a Target for Developing Anticancer Therapy". International Journal of Molecular Sciences 24, n.º 4 (8 de febrero de 2023): 3436. http://dx.doi.org/10.3390/ijms24043436.
Texto completoMatos, Cristina P., Yasemin Yildizhan, Zelal Adiguzel, Fernando R. Pavan, Débora L. Campos, João Costa Pessoa, Liliana P. Ferreira, Ana Isabel Tomaz, Isabel Correia y Ceyda Acilan. "New ternary iron(iii) aminobisphenolate hydroxyquinoline complexes as potential therapeutic agents". Dalton Transactions 48, n.º 24 (2019): 8702–16. http://dx.doi.org/10.1039/c9dt01193e.
Texto completo