Literatura académica sobre el tema "Tethering complex exocyst"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Tethering complex exocyst".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Tethering complex exocyst"

1

Wiederkehr, Andreas, Johan-Owen De Craene, Susan Ferro-Novick y Peter Novick. "Functional specialization within a vesicle tethering complex". Journal of Cell Biology 167, n.º 5 (6 de diciembre de 2004): 875–87. http://dx.doi.org/10.1083/jcb.200408001.

Texto completo
Resumen
The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Δ, sec5Δ, and exo70Δ strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Eckardt, Nancy A. "An Exocyst Vesicle Tethering Complex in Plants". Plant Cell 20, n.º 5 (mayo de 2008): 1188. http://dx.doi.org/10.1105/tpc.108.200511.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Luo, Guangzuo, Jian Zhang y Wei Guo. "The role of Sec3p in secretory vesicle targeting and exocyst complex assembly". Molecular Biology of the Cell 25, n.º 23 (15 de noviembre de 2014): 3813–22. http://dx.doi.org/10.1091/mbc.e14-04-0907.

Texto completo
Resumen
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Weiwei, Lei Huang, Chunhua Zhang y Christopher J. Staiger. "Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis". Plant Cell 33, n.º 7 (19 de abril de 2021): 2454–78. http://dx.doi.org/10.1093/plcell/koab116.

Texto completo
Resumen
Abstract Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Boehm, Cordula y Mark C. Field. "Evolution of late steps in exocytosis: conservation, specialization". Wellcome Open Research 4 (26 de julio de 2019): 112. http://dx.doi.org/10.12688/wellcomeopenres.15142.1.

Texto completo
Resumen
Background: The eukaryotic endomembrane system likely arose via paralogous expansion of genes encoding proteins specifying organelle identity, coat complexes and government of fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events molded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical subunits, emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis, and possibly additional pathways, and is a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family, which includes conserved oligomeric Golgi (COG), homotypic fusion and vacuole protein sorting (HOPS), class C core vacuole/endosome tethering (CORVET) and others. The exocyst is integrated into a complex GTPase signaling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and significantly increased genome sequence data, we examined evolution of the exocyst. Methods: We examined evolution of the exocyst by comparative genomics, phylogenetics and structure prediction. Results: The exocyst is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants and Metazoa. Significantly, few taxa retain a partial complex, suggesting that, in the main, all subunits are required for functionality. Further, the ninth exocyst subunit Exo99 is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boehm, Cordula y Mark C. Field. "Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex". Wellcome Open Research 4 (29 de noviembre de 2019): 112. http://dx.doi.org/10.12688/wellcomeopenres.15142.2.

Texto completo
Resumen
Background: The eukaryotic endomembrane system most likely arose via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nishida‐Fukuda, Hisayo. "The Exocyst: Dynamic Machine or Static Tethering Complex?" BioEssays 41, n.º 8 (julio de 2019): 1900056. http://dx.doi.org/10.1002/bies.201900056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lira, Matías, Rodrigo G. Mira, Francisco J. Carvajal, Pedro Zamorano, Nibaldo C. Inestrosa y Waldo Cerpa. "Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex". Cells 9, n.º 11 (3 de noviembre de 2020): 2402. http://dx.doi.org/10.3390/cells9112402.

Texto completo
Resumen
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Novick, P., M. Medkova, G. Dong, A. Hutagalung, K. Reinisch y B. Grosshans. "Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis". Biochemical Society Transactions 34, n.º 5 (1 de octubre de 2006): 683–86. http://dx.doi.org/10.1042/bst0340683.

Texto completo
Resumen
Sec2p is the exchange factor that activates Sec4p, the Rab GTPase controlling the final stage of the yeast exocytic pathway. Sec2p is recruited to secretory vesicles by Ypt32-GTP, a Rab controlling exit from the Golgi. Sec15p, a subunit of the octameric exocyst tethering complex and an effector of Sec4p, binds to Sec2p on secretory vesicles, displacing Ypt32p. Sec2p mutants defective in the region 450–508 amino acids bind to Sec15p more tightly. In these mutants, Sec2p accumulates in the cytosol in a complex with the exocyst and is not recruited to vesicles by Ypt32p. Thus the region 450–508 amino acids negatively regulates the association of Sec2p with the exocyst, allowing it to recycle on to new vesicles. The structures of one nearly full-length exocyst subunit and three partial subunits have been determined and, despite very low sequence identity, all form rod-like structures built of helical bundles stacked end to end. These rods may bind to each other along their sides to form the assembled complex. While Sec15p binds Sec4-GTP on the vesicle, other subunits bind Rho GTPases on the plasma membrane, thus tethering vesicles to exocytic sites. Sec4-GTP also binds Sro7p, a yeast homologue of the Drosophila lgl (lethal giant larvae) tumour suppressor. Sro7 also binds to Sec9p, a SNAP25 (25 kDa synaptosome-associated protein)-like t-SNARE [target-membrane-associated SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor)], and can form a Sec4p–Sro7p–Sec9p ternary complex. Overexpression of Sec4p, Sro7p or Sec1p (another SNARE regulator) can bypass deletions of three different exocyst subunits. Thus promoting SNARE function can compensate for tethering defects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Inoue, Mayumi, Shian-Huey Chiang, Louise Chang, Xiao-Wei Chen y Alan R. Saltiel. "Compartmentalization of the Exocyst Complex in Lipid Rafts Controls Glut4 Vesicle Tethering". Molecular Biology of the Cell 17, n.º 5 (mayo de 2006): 2303–11. http://dx.doi.org/10.1091/mbc.e06-01-0030.

Texto completo
Resumen
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Tethering complex exocyst"

1

Heider, Margaret R. "Investigating the Architecture and Vesicle Tethering Function of the Yeast Exocyst Complex: A Dissertation". eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/832.

Texto completo
Resumen
The exocyst is an evolutionarily conserved, hetero-octameric protein complex proposed to serve as a multi-subunit tethering complex for exocytosis, although it remains poorly understood at the molecular level. The classification of the exocyst as a multisubunit tethering complex (MTC) stems from its known interacting partners, polarized localization at the plasma membrane, and structural homology to other putative MTCs. The presence of 8 subunits begs the questions: why are so many subunits required for vesicle tethering and what are the contributions of each of these subunits to the overall structure of the complex? Additionally, are subunit or subcomplex dynamics a required feature of exocyst function? We purified endogenous exocyst complexes from Saccharomyces cerevisiae, and showed that the purified complexes are stable and consist of all eight subunits with equal stoichiometry. This conclusion contrasts starkly with current models suggesting that the yeast exocyst tethers vesicles by transient assembly of subcomplexes at sites of exocytosis. Using a combination of biochemical and auxininduced degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer, and demonstrated that several known exocyst binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex using negative stain electron microscopy; our results indicate that exocyst exists predominantly as an octameric complex in yeast with a stably assembled, elongated structure. This is the first complete structure of a CATCHR family MTC and it differs greatly from the EM structures available for the partial COG and Dsl1 complexes. Future work will be necessary to determine whether exocyst conformational changes are a required feature of vesicle tethering and how such changes are regulated. These architectural insights are now informing the design of the first in vitro functional assay for the exocyst complex. We developed methodology for attaching fluorescently-labeled exocyst complexes to glass slides and monitoring the capture of purified, endogenous secretory vesicles by single molecule TIRF microscopy. By this approach, we can monitor tethering events in real time and determine the required factors and kinetics of exocytic vesicle tethering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Heider, Margaret R. "Investigating the Architecture and Vesicle Tethering Function of the Yeast Exocyst Complex: A Dissertation". eScholarship@UMMS, 2001. http://escholarship.umassmed.edu/gsbs_diss/832.

Texto completo
Resumen
The exocyst is an evolutionarily conserved, hetero-octameric protein complex proposed to serve as a multi-subunit tethering complex for exocytosis, although it remains poorly understood at the molecular level. The classification of the exocyst as a multisubunit tethering complex (MTC) stems from its known interacting partners, polarized localization at the plasma membrane, and structural homology to other putative MTCs. The presence of 8 subunits begs the questions: why are so many subunits required for vesicle tethering and what are the contributions of each of these subunits to the overall structure of the complex? Additionally, are subunit or subcomplex dynamics a required feature of exocyst function? We purified endogenous exocyst complexes from Saccharomyces cerevisiae, and showed that the purified complexes are stable and consist of all eight subunits with equal stoichiometry. This conclusion contrasts starkly with current models suggesting that the yeast exocyst tethers vesicles by transient assembly of subcomplexes at sites of exocytosis. Using a combination of biochemical and auxininduced degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer, and demonstrated that several known exocyst binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex using negative stain electron microscopy; our results indicate that exocyst exists predominantly as an octameric complex in yeast with a stably assembled, elongated structure. This is the first complete structure of a CATCHR family MTC and it differs greatly from the EM structures available for the partial COG and Dsl1 complexes. Future work will be necessary to determine whether exocyst conformational changes are a required feature of vesicle tethering and how such changes are regulated. These architectural insights are now informing the design of the first in vitro functional assay for the exocyst complex. We developed methodology for attaching fluorescently-labeled exocyst complexes to glass slides and monitoring the capture of purified, endogenous secretory vesicles by single molecule TIRF microscopy. By this approach, we can monitor tethering events in real time and determine the required factors and kinetics of exocytic vesicle tethering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Ashrafzadeh, Parham. "Exploring Cellular Dynamics : From Vesicle Tethering to Cell Migration". Doctoral thesis, Uppsala universitet, Institutionen för medicinsk cellbiologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306174.

Texto completo
Resumen
Cells in the body communicate with each other in order to cooperate efficiently. This communication is in part achieved by regulated secretion of signaling molecules, which when released from a cell may activate receptors present at the plasma membrane of an adjacent cell. Such signals affect both cell fate and behavior. Dysregulated signaling may lead to disease, including cancer. This thesis is focused on how exocytosis and subsequent activation and trafficking of receptors can be regulated, and what the consequences of this regulation may be for cell migration. Actin filaments are important transport structures for secretory vesicle trafficking. In Paper 1, actin polymerization was shown to induce formation of ordered lipid domains in the plasma membrane. Accordingly, actin filaments may thus create and stabilize specific membrane domains that enable docking of vesicles containing secretory cargo. The RhoGEF FGD5 regulates Cdc42 which can result in cytoskeletal rearrangements. In Paper II, FGD5 was shown to be selectively expressed in blood vessels and required for normal VEGFR2 signaling. FGD5 protected VEGFR2 from proteasome-mediated degradation and was essential for endothelial cells to efficiently respond to chemotactic gradients of VEGFA. The exocyst component EXOC7 is essential for tethering secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. In Paper III, EXOC7 was required for trafficking of VEGFR2-containing vesicles to the inner plasma membrane and VEGFR2 presentation at the cell surface. The ability of tumor cells to escape the primary tumor and establish metastasis is in part dependent on their capacity to migrate. In Paper IV, a method based on time-lapse microscopy and fluorescent dyes was created to analyze single cancer cell migration in mixed cancer cell cultures, and in particular the influence of different types on neighboring cells was assessed. In conclusion, these studies have enhanced our understanding of the mechanisms behind cellular trafficking, and may be applied in the future to develop more specific therapeutics to treat cancer and other diseases associated with abnormal angiogenesis and cellular migration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kubátová, Zdeňka. "FUNKČNÍ ANALÝZA VYBRANÝCH PODJEDNOTEK EXOCYSTU EXO70 U ROSTLIN". Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-434262.

Texto completo
Resumen
Arabidopsis thaliana trichomes are large unicellular epidermal outgrowths with a specific development and intriguing shape, which makes them an excellent cell type for our research of cell polarization mecha- nisms. Cell polarity is essential for plant development and the exocyst complex is one of its key regulators. It is an octameric protein complex that mediates polarized exocytosis and growth by targeted tethering of secretory vesicles to the plasma membrane. Its EXO70 subunit functions as a landmark for exocytosis site and physically binds the target membrane through interaction with phospholipids. A remarkable multipli- cation of EXO70 subunit paralogs in land plant genomes is well documented, but the functional diversity of these paralogs remains to be described. In trichomes we revealed the specific role of the EXO70H4 paralog in secondary cell wall deposi- tion, especially in callose synthase delivery. We documented formation of a thick secondary cell wall during the maturation phase of wild type trichome development and a lack of it in the exo70H4 mutant. Moreover, we showed evidence for silica deposition dependency on callose synthesis. Further, we unveiled the formation of apical and basal plasma membrane domains, which differ in their phospholipid compo- sition and ability to bind...
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sabol, Peter. "Úloha vybraných podjednotek komplexu exocyst v odpovědi rostlin na patogena". Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-383787.

Texto completo
Resumen
In the recent years, there has been a growing number of publications indicating at the involvement of plant secretory pathway in defense against phytopathogens. Specifically, roles of plant exocyst complex have been explored in deeper detail in current research. Yet, exactly how exocyst- mediated exocytosis contributes to secretion of antimicrobials and cell wall-based defense remains unclear. In the presented Dissertation, I provide both experimental evidence and devise further hypotheses on selected exocyst's subunits in plant immune reactions. Particularly, I show that EXO70B1 exocyst subunit interacts with immunity-related RIN4 protein. Cleavage of RIN4 by AvrRpt2 Pseudomonas syringae effector protease releases both RIN4 fragments and EXO70B1 from the plasma membrane when transiently expressed in Nicotiana benthamiana leaves. I speculate on how this might have an implication in regulation of polarized callose deposition. In a co-authored opinion paper, we also hypothesize that EXO70B1-mediated autophagic degradation of TN2 resistance protein prevents its hyperactivation and lesion mimic phenotype development. In addition, in collaboration with my colleagues, I present data on EXO70H4's engagement in PMR4 callose synthase secretion, required for silica deposition. Representing a possible...
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rawat, Anamika Ashok. "Role komplexu exocyst v růstu a vývoji mechu Physcomitrella patens". Doctoral thesis, 2017. http://www.nusl.cz/ntk/nusl-368882.

Texto completo
Resumen
During the course of evolution the early land plants gained extensive innovations that can be seen in modern day plants. The polar growth is an ancient feature of eukaryotic cells and is one of preadaptations that helped plants in successful colonization of land. The polar growth in plants regulates not only the direction of cell expansion and structural properties of cell wall but especially also the orientation of cell division, and is governed by various factors, including the exocyst complex. The exocyst is a well conserved vesicle tethering multi-subunit complex involved in tethering of secretory vesicles to the target membrane. The essential role of the exocyst complex in regulation of various cellular processes in Angiosperms is now well documented. Here I present results of a doctoral project that contributed to phylogenetic analyses of the land plant exocyst complex and especially to uncovering functions of three moss exocyst subunits, namely EXO70 (isoform PpEXO70.3d), SEC6 and SEC3 (isoforms PpSEC3A and PpSEC3B) in the model organism Physcomitrella patens. Various knock-out (KO) mutants in several moss exocyst subunits (Ppexo70.3d, Ppsec6, Ppsec3a and Ppsec3b) show pleiotropic defects directly or indirectly linked to the cell polarity regulation. Cell elongation and differentiation,...
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ulrychová, Lenka. "Subcelulární lokalizace a úloha komplexu exocyst v savčích buňkách během cytokineze". Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-297605.

Texto completo
Resumen
Cytokinesis is the last step of cell cycle when two individual daughter cells separate in process called abscission. This process involves various cellular membrane structures such as endoplasmic reticulum or trans-Golgi network. Moreover, recent investigation has also highlighted an important role of recycling endosomes. The membrane dynamics appear to be important during cell division especially for the formation of new plasma membrane between two daughter cells. Numerous studies suggest that cytokinesis is tightly linked with highly sophisticated transmembrane shuttle that is controlled by Ras-superfamily members such as Rab and Ral proteins. Moreover, during last years has also been revealed the involvement of tethering factors which mediate the fusion of intracellular vesicles with the target plasma membrane. The best known tethering factor is the evolutionary conserved exocyst complex found in all eukaryotic cells. This protein complex is composed of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) and was found to interact with members of Ras- superfamily suggesting its involvement in the regulation of cytokinesis. Although the exact mechanism remains shrouded in fog this work suppose the possible interactions among Ras- like proteins and exocyst members which may...
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Aldorfová, Klára. "Charakterizace podjednotky SEC15 poutacího komplexu exocyst u A. thaliana". Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-351459.

Texto completo
Resumen
The final step of secretion termed exocytosis is mediated by the exocyst complex. The exocyst is an evolutionary conserved protein complex that tethers secretory vesicle to the target membrane and consists of eight subunits: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo84, and Exo70. Sec15 exocyst subunit was previously shown to connect the rest of the exocyst complex with a secretory vesicle in yeast, mammals and fruit fly via interaction with Rab GTPase and GEF of Rab GTPase. Here, I show that plant SEC15B potentially functions in evolutionary conserved manner. First, two mutant lines of Arabidopsis thaliana sec15b mutant were tested in characteristics typical for other exocyst mutants. Although some characteristics reach certain level of plasticity, both sec15b-1 and sec15b-2 show similar tendencies, which are mostly consistent with defects with other mutants in exocyst subunits. sec15b-1 has been determined as a stronger allele that is defective in formation of seed coat, elongation of etiolated hypocotyl, growth of stem and primary root, establishment of axillary branches and lateral roots, diameter of rosette and, unexpectedly, growth of pollen tubes. Phenotype of sec15b-1 was rescued by insertion of SEC15B gene under SEC15B promotor. Second, complementation test showed that SEC15B and SEC15A are...
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía