Literatura académica sobre el tema "Test Explosibility"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Test Explosibility".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Test Explosibility"

1

Eades, Robert y Kyle Perry. "Evaluation of a 38 L Explosive Chamber for Testing Coal Dust Explosibility". Journal of Combustion 2019 (2 de septiembre de 2019): 1–7. http://dx.doi.org/10.1155/2019/5810173.

Texto completo
Resumen
Coal dust explosions are the deadliest disasters facing the coal mining industry. Research has been conducted globally on this topic for decades. The first explosibility tests in the United States were performed by the Bureau of Mines using a 20 L chamber. This serves as the basis for all standardized tests used for combustible dusts. The purpose of this paper is to investigate the use of a new 38 L chamber for testing coal dust explosions. The 38 L chamber features design modifications to model the unique conditions present in an underground coal mine when compared to other industries where combustible dust hazards are present. A series of explosibility tests were conducted within the explosive chamber using a sample of Pittsburgh pulverized coal dust and a five kJ Sobbe igniter. Analysis to find the maximum pressure ratio and Kst combustible dust parameter was performed for each trial. Based upon this analysis, observations are made for each concentration regarding whether the explosibility test was under-fueled or over-fueled. Based upon this analysis, a recommendation for future explosibility testing concentrations is made.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cashdollar, Kenneth L. y Martin Hertzberg. "20‐l explosibility test chamber for dusts and gases". Review of Scientific Instruments 56, n.º 4 (abril de 1985): 596–602. http://dx.doi.org/10.1063/1.1138295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tan, Bo, Huilin Liu, Bin Xu y Tian Wang. "Comparative study of the explosion pressure characteristics of micro- and nano-sized coal dust and methane–coal dust mixtures in a pipe". International Journal of Coal Science & Technology 7, n.º 1 (3 de enero de 2020): 68–78. http://dx.doi.org/10.1007/s40789-019-00289-w.

Texto completo
Resumen
AbstractCoal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust. In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions, a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts (800 nm, 1200 nm, 45 μm, 60 μm, and 75 μm) at five concentrations (100 g/m3, 250 g/m3, 500 g/m3, 750 g/m3, and 1000 g/m3). The explosion pressure characteristics were closely related to the coal dust particle size and concentration. The maximum explosion pressure, maximum rate of pressure rise, and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart, indicating that a nano-sized coal dust explosion is more dangerous. The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s), indicating weak explosibility. When 7% methane was added to the air, the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s), indicating very strong explosibility. This indicates that adding methane to the coal dust mixture substantially increased the hazard grade.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Addo, Albert, Ashok G. Dastidar, Jérôme R. Taveau, Luke S. Morrison, Faisal I. Khan y Paul R. Amyotte. "Niacin, lycopodium and polyethylene powder explosibility in 20-L and 1-m3 test chambers". Journal of Loss Prevention in the Process Industries 62 (noviembre de 2019): 103937. http://dx.doi.org/10.1016/j.jlp.2019.103937.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

"95/05417 Thoughts on some dust explosibility test methods in 20L apparatus". Fuel and Energy Abstracts 36, n.º 5 (septiembre de 1995): 376. http://dx.doi.org/10.1016/0140-6701(95)92352-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Test Explosibility"

1

"Ignitability and Explosibility Data for Dusts from Laboratory Tests". En Dust Explosions in the Process Industries, 681–704. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067602-1/50011-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Eckhoff, Rolf K. "Assessment of Ignitability, Explosibility, and Related Properties of Dusts by Laboratory-Scale Tests". En Dust Explosions in the Process Industries, 473–548. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067602-1/50008-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Test Explosibility"

1

Zhao, Z., B. Gillispie, T. Han, N. Patel, G. Eesley y J. Mantese. "Kinetic Deposition of Ti Coatings Using Gas Atomized Ti Powder Particles". En ITSC2005, editado por E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0191.

Texto completo
Resumen
Abstract The kinetic spray process is a coating process that involves impingement of a substrate by metallic particles at high velocities. In this work, we investigated the kinetically sprayed Ti coatings, which were deposited onto different metallic substrates using gas-atomized powders. The powder particles were characterized in terms of size distribution, morphology, hardness, and explosibilty index. The propellant gas used for coating deposition was compressed nitrogen. The substrates were placed inside an enclosure filled with nitrogen gas during deposition. It was observed that Ti coatings can be deposited at relatively high deposition efficiencies using large particles (median size~ 100 mm). Ti coatings with a wide range of thickness and good macroscopic appearance were readily prepared. The particle temperature appears to have strong effects on the coating formation; deposition efficiencies of ~90% were achievable. Microscopic examination of the coatings revealed deposited Ti particles with significantly lower deformation when compared to ductile materials such as Al and Cu. As a result, the Ti coatings exhibited a high degree of porosity. Several methods were exploited in order to make the Ti coatings denser, including the incorporation of heavy, hard particles for in-situ peening during the coating deposition, and post deposition laser heating. Abstract only; no full-text paper available.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía