Tesis sobre el tema "Teoria dei gruppi finiti"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 16 mejores tesis para su investigación sobre el tema "Teoria dei gruppi finiti".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lorini, Stefano. "Una introduzione alla teoria delle rappresentazioni dei gruppi finiti". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8727/.
Texto completoGaronzi, Martino. "Coverings of Groups by Subgroups". Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422589.
Texto completoDato un gruppo finito non ciclico $G$, un "ricoprimento" di $G$ è una famiglia $\mathcal{H}$ di sottogruppi propri di $G$ tale che $\bigcup_{H \in \mathcal{H}} H = G$. Un "ricoprimento normale" di $G$ è un ricoprimento $\mathcal{H}$ di $G$ tale che $gHg^{-1} \in \mathcal{H}$ per ogni $H \in \mathcal{H}$, $g \in G$. Definiamo "numero di ricoprimento" $\sigma(G)$ di $G$ come la più piccola cardinalità di un ricoprimento di $G$, e definiamo "numero di ricoprimento normale" $\gamma(G)$ di $G$ come il più piccolo numero di classi di coniugio di un ricoprimento normale di $G$. Se $G$ è ciclico poniamo $\sigma(G) = \gamma(G) = \infty$, con la convenzione che $n < \infty$ per ogni intero $n$. In questa tesi di dottorato studiamo questi due invarianti. Andrea Lucchini ed Eloisa Detomi hanno congetturato che se $G$ è un gruppo finito non abeliano tale che $\sigma(G) < \sigma(G/N)$ per ogni sottogruppo normale non banale $N$ di $G$ allora $G$ è "monolitico", cioè ammette un unico sottogruppo normale minimale. In questa tesi affrontiamo questa congettura e diamo una riduzione parziale al caso almost-simple. Questo richiede buone stime da sopra e da sotto per il numero di ricoprimento dei gruppi monolitici, che trattiamo strada facendo. Diamo una stima asintotica del numero di numeri di ricoprimento di gruppi monolitici $G$ con sottogruppo normale minimale $N$ non abeliano tale che $G/N$ è ciclico. Calcoliamo inoltre il numero di ricoprimento di un prodotto diretto di gruppi, e il suo numero di ricoprimento normale nel caso i fattori non ammettano quozienti abeliani isomorfi. Dimostriamo varie stime dall'alto per $\gamma(G)$ e affrontiamo la seguente congettura, formulata da me e Attila Maroti: se $G$ è un qualsiasi gruppo finito non ciclico e $p$ è il più grande divisore primo di $|G|$ allora $\gamma(G) \leq p+1$. Riduciamo la congettura al caso almost-simple e trattiamo i gruppi alterni, i gruppi sporadici e alcuni tra i gruppi lineari
Mazzone, Roberta. "Algebre monounarie polinomiali". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3684/.
Texto completoRecupero, Giuseppe Antonio. "Il Teorema di Dirichlet sui primi nelle progressioni aritmetiche". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17092/.
Texto completoAtza, Elisa. "Alcuni esempi nella classificazione dei gruppi finiti di ordine dato". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7467/.
Texto completoGavazzi, Federica. "Polinomi Invarianti Sotto l'Azione dei Gruppi Finiti e Algebre di Cohen-Macauley". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18779/.
Texto completoPaoloni, Lorenzo. "Simmetrie e teoria dei gruppi nella fisica delle particelle". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19181/.
Texto completoPecorari, Laura. "Teoria dei gruppi e simmetrie: il modello a quark". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21888/.
Texto completoPolo, Filisan Sara. "Teoria dei campi e simmetrie". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Buscar texto completoRomano, Emanuela. "Some topics in the theory of generalized fc-groups". Doctoral thesis, Universita degli studi di Salerno, 2011. http://hdl.handle.net/10556/174.
Texto completoA finiteness condition is a group-theoretical property which is possessed by all finite groups: thus it is a generalization of finiteness. This embraces an immensely wide collection of properties like, for example, finiteness, finitely generated, the maximal condition and so on. There are also numerous finiteness conditions which restrict, in some way, a set of conjugates or a set of commutators in a group. Sometimes these restrictions are strong enough to impose a recognizable structure on the group. R. Baer and B.H. Neumann were the first authors to discuss groups in which there is a limitation on the number of conjugates which an element may have. An element x of a group G is called FC-element of G if x has only a finite number of conjugates in G, that is to say, if |G : CG(x)| is finite or, equivalently, if the factor group G/CG(⟨x⟩G) is finite. It is a basic fact that the FC-elements always form a characteristic subgroup. An FC-element may be thought as a generalization of an element of the center of the group, because the elements of the latter type have just one conjugate. For this reason the subgroup of all FC-elements is called the FC-center and, clearly, always contains the center. A group G is called an FC-group if it equals its FC-center, in other words, every conjugacy class of G is finite. Prominent among the FC-groups are groups with center of finite index: in such a group each centralizer must be of finite index, because it contains the center. Of course in particular all abelian groups and all finite groups are FC-groups. Further examples of FC-groups can be obtained by noting that the class of FC-groups is closed with respect to forming subgroups, images and direct products. The theory of FC-groups had a strong development in the second half of the last century and relevant contributions have been given by several important authors including R. Baer, B.H. Neumann, Y.M. Gorcakov, Chernikov,L.A. Kurdachenko, and many others. We shall use the monographs , as a general reference for results on FC-groups. The study of FC-groups can be considered as a natural investigation on the properties common to both finite groups and abelian groups. A particular interest has been devoted to groups having many FC-subgroups or many FC-elements. [edited by the author]
IX n.s.
Fioretti, Michael. "Simmetrie e gruppi nella fisica moderna". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21059/.
Texto completoBailetti, Michele. "Teoria di Galois : risolubilità per radicali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12432/.
Texto completoBazzocchi, Evienia. "Contraibilità dell'Outer Space". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16405/.
Texto completoDore, Lucia. "Teorema di Hurwitz". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16174/.
Texto completoDionigi, Pierfrancesco. "Simmetrie e principi di relatività". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12390/.
Texto completoLisi, Francesca. "Una condizione di subnormalità generalizzata per gruppi finiti". Doctoral thesis, 2021. http://hdl.handle.net/2158/1239038.
Texto completo