Artículos de revistas sobre el tema "Tensor PCA"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Tensor PCA".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zare, Ali, Alp Ozdemir, Mark A. Iwen y Selin Aviyente. "Extension of PCA to Higher Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and Tensor PCA". Proceedings of the IEEE 106, n.º 8 (agosto de 2018): 1341–58. http://dx.doi.org/10.1109/jproc.2018.2848209.
Texto completoWang, An-Dong, Zhong Jin y Jing-Yu Yang. "A faster tensor robust PCA via tensor factorization". International Journal of Machine Learning and Cybernetics 11, n.º 12 (24 de junio de 2020): 2771–91. http://dx.doi.org/10.1007/s13042-020-01150-2.
Texto completoJagannath, Aukosh, Patrick Lopatto y Léo Miolane. "Statistical thresholds for tensor PCA". Annals of Applied Probability 30, n.º 4 (agosto de 2020): 1910–33. http://dx.doi.org/10.1214/19-aap1547.
Texto completoBen Arous, Gérard, Reza Gheissari y Aukosh Jagannath. "Algorithmic thresholds for tensor PCA". Annals of Probability 48, n.º 4 (julio de 2020): 2052–87. http://dx.doi.org/10.1214/19-aop1415.
Texto completoJiang, Bo, Shiqian Ma y Shuzhong Zhang. "Low-M-Rank Tensor Completion and Robust Tensor PCA". IEEE Journal of Selected Topics in Signal Processing 12, n.º 6 (diciembre de 2018): 1390–404. http://dx.doi.org/10.1109/jstsp.2018.2873144.
Texto completoLiu, Cong, Xu Wei-sheng y Wu Qi-di. "Tensorial Kernel Principal Component Analysis for Action Recognition". Mathematical Problems in Engineering 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/816836.
Texto completoOuerfelli, Mohamed, Mohamed Tamaazousti y Vincent Rivasseau. "Random Tensor Theory for Tensor Decomposition". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 7913–21. http://dx.doi.org/10.1609/aaai.v36i7.20761.
Texto completoZhang, Hongjun, Peng Li, Weibei Fan, Zhuangzhuang Xue y Fanshuo Meng. "Tensor Multi-Clustering Parallel Intelligent Computing Method Based on Tensor Chain Decomposition". Computational Intelligence and Neuroscience 2022 (6 de septiembre de 2022): 1–12. http://dx.doi.org/10.1155/2022/7396185.
Texto completoQiu, Yuning, Guoxu Zhou, Zhenhao Huang, Qibin Zhao y Shengli Xie. "Efficient Tensor Robust PCA Under Hybrid Model of Tucker and Tensor Train". IEEE Signal Processing Letters 29 (2022): 627–31. http://dx.doi.org/10.1109/lsp.2022.3143721.
Texto completoYang, Sihai, Xian-Hua Han y Yen-Wei Chen. "GND-PCA Method for Identification of Gene Functions Involved in Asymmetric Division of C. elegans". Mathematics 11, n.º 9 (25 de abril de 2023): 2039. http://dx.doi.org/10.3390/math11092039.
Texto completoHached, Mustapha, Khalide Jbilou, Christos Koukouvinos y Marilena Mitrouli. "A Multidimensional Principal Component Analysis via the C-Product Golub–Kahan–SVD for Classification and Face Recognition". Mathematics 9, n.º 11 (29 de mayo de 2021): 1249. http://dx.doi.org/10.3390/math9111249.
Texto completoLee, Kwanyong y Hyeyoung Park. "Probabilistic learning of similarity measures for tensor PCA". Pattern Recognition Letters 33, n.º 10 (julio de 2012): 1364–72. http://dx.doi.org/10.1016/j.patrec.2012.03.019.
Texto completoReddy, G. Vijendar, B. Siva Manga Raju, K. Varshith, S. Sahil y L. Harsha Vardhan. "Alzheimer’s Disease Recognition Applying Non-Negative Matrix Factorization Characteristics from Brain Magnetic Resonance Images (MRI)". E3S Web of Conferences 391 (2023): 01047. http://dx.doi.org/10.1051/e3sconf/202339101047.
Texto completoYang, Ben Juan y Ben Yong Liu. "Improvement and Kernelization of T-2DPCA with Application to Face Recognition". Applied Mechanics and Materials 713-715 (enero de 2015): 2177–80. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.2177.
Texto completoShenhar, Chen, Hadassa Degani, Yaara Ber, Jack Baniel, Shlomit Tamir, Ofer Benjaminov, Philip Rosen, Edna Furman-Haran y David Margel. "Diffusion Is Directional: Innovative Diffusion Tensor Imaging to Improve Prostate Cancer Detection". Diagnostics 11, n.º 3 (20 de marzo de 2021): 563. http://dx.doi.org/10.3390/diagnostics11030563.
Texto completoByeon, Yeong-Hyeon, Jae-Neung Lee, Sung-Bum Pan y Keun-Chang Kwak. "Multilinear EigenECGs and FisherECGs for Individual Identification from Information Obtained by an Electrocardiogram Sensor". Symmetry 10, n.º 10 (12 de octubre de 2018): 487. http://dx.doi.org/10.3390/sym10100487.
Texto completoHuang, Jun, Kehua Su, Jamal El-Den, Tao Hu y Junlong Li. "An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition". Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/393265.
Texto completoReddy, K. Shirisha, N. Arjun y Kowkuri Hrushikesh Mudiraj. "Regression and Classification of Alzheimer’s Disease Diagnosis Using NMF-TDNet Features From 3D Brain MR Image". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 7s (13 de julio de 2023): 210–16. http://dx.doi.org/10.17762/ijritcc.v11i7s.6993.
Texto completoMudiraj, Kowkuri Hrushikesh, N. Arjun y K. Shirisha Reddy. "Hybrid Approach for Alzheimer’s Disease Diagnosis For 3D Brain MR Image". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 5s (26 de mayo de 2023): 330–35. http://dx.doi.org/10.17762/ijritcc.v11i5s.6755.
Texto completoMeng, Shushu, Long-Ting Huang y Wen-Qin Wang. "Tensor Decomposition and PCA Jointed Algorithm for Hyperspectral Image Denoising". IEEE Geoscience and Remote Sensing Letters 13, n.º 7 (julio de 2016): 897–901. http://dx.doi.org/10.1109/lgrs.2016.2552403.
Texto completoLiu, Chang, Tao Yan, WeiDong Zhao, YongHong Liu, Dan Li, Feng Lin y JiLiu Zhou. "Incremental Tensor Principal Component Analysis for Handwritten Digit Recognition". Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/819758.
Texto completoWu, Hao, Ruihan Yue, Ruixue Gao, Rui Wen, Jun Feng y Youhua Wei. "Hyperspectral denoising based on the principal component low-rank tensor decomposition". Open Geosciences 14, n.º 1 (1 de enero de 2022): 518–29. http://dx.doi.org/10.1515/geo-2022-0379.
Texto completoYU, HONGCHUAN, JIAN J. ZHANG y XIAOSONG YANG. "TENSOR-BASED FEATURE REPRESENTATION WITH APPLICATION TO MULTIMODAL FACE RECOGNITION". International Journal of Pattern Recognition and Artificial Intelligence 25, n.º 08 (diciembre de 2011): 1197–217. http://dx.doi.org/10.1142/s0218001411009081.
Texto completoSun, Tianyu, Lang He, Xi Fang y Liang Xie. "Enhanced Multilinear PCA for Efficient Image Analysis and Dimensionality Reduction: Unlocking the Potential of Complex Image Data". Mathematics 13, n.º 3 (5 de febrero de 2025): 531. https://doi.org/10.3390/math13030531.
Texto completoMiyoshi, Tasuku, Yasuhisa Kamada y Yoshiyuki Kobayashi. "Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis". Proceedings 49, n.º 1 (15 de junio de 2020): 154. http://dx.doi.org/10.3390/proceedings2020049154.
Texto completoLiu, Jingxiang, Dan Wang y Junghui Chen. "Monitoring Framework Based on Generalized Tensor PCA for Three-Dimensional Batch Process Data". Industrial & Engineering Chemistry Research 59, n.º 22 (29 de abril de 2020): 10493–508. http://dx.doi.org/10.1021/acs.iecr.9b06244.
Texto completoFilisbino, Tiene A., Gilson A. Giraldi y Carlos E. Thomaz. "Comparing Ranking Methods for Tensor Components in Multilinear and Concurrent Subspace Analysis with Applications in Face Images". International Journal of Image and Graphics 15, n.º 01 (enero de 2015): 1550006. http://dx.doi.org/10.1142/s0219467815500060.
Texto completoTaguchi, Y.-h. y Turki Turki. "Projection in genomic analysis: A theoretical basis to rationalize tensor decomposition and principal component analysis as feature selection tools". PLOS ONE 17, n.º 9 (29 de septiembre de 2022): e0275472. http://dx.doi.org/10.1371/journal.pone.0275472.
Texto completoTaguchi, Y.-h. y Turki Turki. "Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data". Genes 11, n.º 12 (11 de diciembre de 2020): 1493. http://dx.doi.org/10.3390/genes11121493.
Texto completoYan, Ronghua, Jinye Peng y Dongmei Ma. "Dimensionality Reduction Based on PARAFAC Model". Journal of Imaging Science and Technology 63, n.º 6 (1 de noviembre de 2019): 60501–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2019.63.6.060501.
Texto completoMunia, Tamanna T. K. y Selin Aviyente. "Multivariate Analysis of Bivariate Phase-Amplitude Coupling in EEG Data Using Tensor Robust PCA". IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2021): 1268–79. http://dx.doi.org/10.1109/tnsre.2021.3092890.
Texto completoSkantze, Viktor, Mikael Wallman, Ann-Sofie Sandberg, Rikard Landberg, Mats Jirstrand y Carl Brunius. "Identifying Metabotypes From Complex Biological Data Using PARAFAC". Current Developments in Nutrition 5, Supplement_2 (junio de 2021): 882. http://dx.doi.org/10.1093/cdn/nzab048_017.
Texto completoSalmanpour, Mohammad R., Seyed Masoud Rezaeijo, Mahdi Hosseinzadeh y Arman Rahmim. "Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques". Diagnostics 13, n.º 10 (11 de mayo de 2023): 1696. http://dx.doi.org/10.3390/diagnostics13101696.
Texto completoGorgannejad, S., M. Reisi Gahrooei, K. Paynabar y R. W. Neu. "Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression". Acta Materialia 165 (febrero de 2019): 259–69. http://dx.doi.org/10.1016/j.actamat.2018.11.047.
Texto completoVerma, Gaurav, Siddhisanket Raskar, Murali Emani y Barbara Chapman. "Cross-Feature Transfer Learning for Efficient Tensor Program Generation". Applied Sciences 14, n.º 2 (6 de enero de 2024): 513. http://dx.doi.org/10.3390/app14020513.
Texto completoKleshchenko, E. I., M. P. Yakovenko, D. A. Kayumova, M. G. Kulagina, E. V. Borovikova, E. P. Apalkova y A. F. Komarov. "Сharacteristics of nervous system damage in children born with a very low and extremely low birthweight and perinatal hypoxic brain injury". Kuban Scientific Medical Bulletin 27, n.º 2 (12 de abril de 2020): 70–80. http://dx.doi.org/10.25207/1608-6228-2020-27-2-70-80.
Texto completoKerkour-El Miad, Aissa y A. Kerour-El Miad. "Application of Principal Component Analysis (PCA) for the Choice of Parameters of a Micromechanical Model". Key Engineering Materials 820 (septiembre de 2019): 75–84. http://dx.doi.org/10.4028/www.scientific.net/kem.820.75.
Texto completoZhang, Fan, Xiaoping Wang y Ke Sun. "A Report on Multilinear PCA Plus GTDA to Deal With Face Image". Cybernetics and Information Technologies 16, n.º 1 (1 de marzo de 2016): 146–57. http://dx.doi.org/10.1515/cait-2016-0012.
Texto completoCaporale, Alessandra Stella, Marco Nezzo, Maria Giovanna Di Trani, Alessandra Maiuro, Roberto Miano, Pierluigi Bove, Alessandro Mauriello, Guglielmo Manenti y Silvia Capuani. "Acquisition Parameters Influence Diffusion Metrics Effectiveness in Probing Prostate Tumor and Age-Related Microstructure". Journal of Personalized Medicine 13, n.º 5 (20 de mayo de 2023): 860. http://dx.doi.org/10.3390/jpm13050860.
Texto completoTurki, Turki, Sanjiban Sekhar Roy y Y. H. Taguchi. "Optimized Tensor Decomposition and Principal Component Analysis Outperforming State-of-the-Art Methods When Analyzing Histone Modification Chromatin Immunoprecipitation Profiles". Algorithms 16, n.º 9 (23 de agosto de 2023): 401. http://dx.doi.org/10.3390/a16090401.
Texto completoAgajo, James, Emeshili O. Joseph, Emmanuel Eronu y Evans Ashigwuike. "An Algorithm for Spectrum Hole Detection using Convex Optimization And Tensor Analysis In Cognitive Radio Network". Journal of Biomedical Engineering and Medical Imaging 6, n.º 6 (31 de diciembre de 2019): 01–24. http://dx.doi.org/10.14738/jbemi.66.8010.
Texto completoBiroli, Giulio, Chiara Cammarota y Federico Ricci-Tersenghi. "How to iron out rough landscapes and get optimal performances: averaged gradient descent and its application to tensor PCA". Journal of Physics A: Mathematical and Theoretical 53, n.º 17 (8 de abril de 2020): 174003. http://dx.doi.org/10.1088/1751-8121/ab7b1f.
Texto completoRhee, Hannah S. y Joseph F. Y. Hoh. "Immunohistochemical Analysis of Myosin Heavy Chain Expression in Laryngeal Muscles of the Rabbit, Cat, and Baboon". Journal of Histochemistry & Cytochemistry 56, n.º 10 (23 de junio de 2008): 929–50. http://dx.doi.org/10.1369/jhc.2008.951756.
Texto completoLU, Zheng-Liang y U. Hou LOK. "Dimension-Reduced Modeling for Local Volatility Surface via Unsupervised Learning". Romanian Journal of Information Science and Technology 27, n.º 3-4 (30 de septiembre de 2024): 255–66. http://dx.doi.org/10.59277/romjist.2024.3-4.01.
Texto completoLiang, Peidong, Chentao Zhang, Habte Tadesse Likassa y Jielong Guo. "New Robust Tensor PCA via Affine Transformations and L 2,1 Norms for Exact Tubal Low-Rank Recovery from Highly Corrupted and Correlated Images in Signal Processing". Mathematical Problems in Engineering 2022 (31 de marzo de 2022): 1–14. http://dx.doi.org/10.1155/2022/3002348.
Texto completoUhliar, Matej. "Atomic partial charge model in chemistry: chemical accuracy of theoretical approaches for diatomic molecules". Acta Chimica Slovaca 17, n.º 1 (1 de enero de 2024): 1–11. http://dx.doi.org/10.2478/acs-2024-0001.
Texto completoQing, Yuhao y Wenyi Liu. "Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism". Remote Sensing 13, n.º 3 (20 de enero de 2021): 335. http://dx.doi.org/10.3390/rs13030335.
Texto completoChen, Hanxin, Shaoyi Li y Menglong Li. "Multi-Channel High-Dimensional Data Analysis with PARAFAC-GA-BP for Nonstationary Mechanical Fault Diagnosis". International Journal of Turbomachinery, Propulsion and Power 7, n.º 3 (28 de junio de 2022): 19. http://dx.doi.org/10.3390/ijtpp7030019.
Texto completoÞórðarson, Andri Freyr, Andreas Baum, Mónica García, Sergio M. Vicente-Serrano y Anders Stockmarr. "Gap-Filling of NDVI Satellite Data Using Tucker Decomposition: Exploiting Spatio-Temporal Patterns". Remote Sensing 13, n.º 19 (6 de octubre de 2021): 4007. http://dx.doi.org/10.3390/rs13194007.
Texto completoLien, Chung-Yueh, Tseng-Tse Chen, En-Tung Tsai, Yu-Jer Hsiao, Ni Lee, Chong-En Gao, Yi-Ping Yang et al. "Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches". Cells 12, n.º 2 (4 de enero de 2023): 211. http://dx.doi.org/10.3390/cells12020211.
Texto completo