Tesis sobre el tema "Temporal clinical data warehouse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 31 mejores tesis para su investigación sobre el tema "Temporal clinical data warehouse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Jamjoom, Arwa. "Transitioning a clinical unit to a data warehouse". Thesis, University of Surrey, 2011. http://epubs.surrey.ac.uk/804656/.
Texto completoTsuruda, Renata Miwa. "STB-index : um índice baseado em bitmap para data warehouse espaço-temporal". Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/525.
Texto completoFinanciadora de Estudos e Projetos
The growing concern with the support of the decision-making process has made companies to search technologies that support their decisions. The technology most widely used presently is the Data Warehouse (DW), which allows storing data so it is possible to produce useful and reliable information to assist in strategic decisions. Combining the concepts of Spatial Data Warehouse (SDW), that allows geometry storage and managing, and Temporal Data Warehouse (TDW), which allows storing data changes that occur in the real-world, a research topic known as Spatio-Temporal Data Warehouse (STDW) has emerged. STDW are suitable for the treatment of geometries that change over time. These technologies, combined with the steady growth volume of data, show the necessity of index structures to improve the performance of analytical query processing with spatial predicates and also with geometries that may vary over time. In this sense, this work focused on proposing an index for STDW called Spatio-Temporal Bitmap Index, or STB-index. The proposed index was designed to processing drill-down and roll-up queries considering the existence of predefined spatial hierarchies and with spatial attributes that can vary its position and shape over time. The validation of STB-index was performed by conducting experimental tests using a DWET created from synthetic data. Tests evaluated the elapsed time and the number of disk accesses to construct the index, the amount of storage space of the index and the elapsed time and the number of disk accesses for query processing. Results were compared with query processing using database management system resources and STBindex improved the query performance by 98.12% up to 99.22% in response time compared to materialized views.
A crescente preocupação com o suporte ao processo de tomada de decisão estratégica fez com que as empresas buscassem tecnologias que apoiassem as suas decisões. A tecnologia mais utilizada atualmente é a de Data Warehouse (DW), que permite armazenar dados de forma que seja possível produzir informação útil e confiável para auxiliar na tomada de decisão estratégica. Aliando-se os conceitos de Data Warehouse Espacial (DWE), que permite o armazenamento e o gerenciamento de geometrias, e de Data Warehouse Temporal (DWT), que possibilita representar as mudanças nos dados que ocorrem no mundo real, surgiu o tema de pesquisa conhecido por Data Warehouse Espaço-Temporal (DWET), que é próprio para o tratamento de geometrias que se alteram ao longo do tempo. Essas tecnologias, aliadas ao constante crescimento no volume de dados armazenados, evidenciam a necessidade de estruturas de indexação que melhorem o desempenho do processamento de consultas analíticas com predicados espaciais e com variação das geometrias no tempo. Nesse sentido, este trabalho se concentrou na proposta de um índice para DWET denominado Spatio- Temporal Bitmap Index, ou STB-index. O índice proposto foi projetado para o processamento de consultas do tipo drill-down e roll-up considerando a existência de hierarquias espaciais predefinidas, sendo que os atributos espaciais podem variar sua posição e sua forma ao longo do tempo. A validação do STB-index ocorreu por meio da realização de testes experimentais utilizando um DWET criado a partir de dados sintéticos. Os testes avaliaram o tempo e o número de acessos a disco para a construção do índice, a quantidade de espaço para armazenamento do índice e o tempo e número de acessos a disco para o processamento de consultas analíticas. Os resultados obtidos foram comparados com o processamento de consultas utilizando os recursos disponíveis dos sistemas gerenciadores de banco de dados, sendo que o STB-index apresentou um ganho de desempenho entre 98,12% e 99,22% no tempo de resposta das consultas se comparado ao uso de visões materializadas.
Veronica, Ruiz Castro Carla. "CSTM: a conceptual spatiotemporal model for data warehouses". Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/2209.
Texto completoConselho Nacional de Desenvolvimento Científico e Tecnológico
Estudos abrangentes relacionados a data warehouse temporais e espaciais têm sido conduzidos. Data warehouse temporais permitem lidar com dados variáveis no tempo tanto em tabelas de fatos quanto em tabelas de dimensões. Uma ampla variedade de aplicações precisa capturar não só características espaciais, mas também temporais das entidades modeladas. Entretanto, estudos que unam essas duas áreas de pesquisa não têm sido suficientemente considerados. É neste contexto que o presente trabalho de dissertação está definido. Ele propõe um modelo conceitual para data warehouses espaço temporais. Este modelo permite aos usuários definir níveis, hierarquias e dimensões tanto com características espaciais como temporais. Como consequência disso, é possível representar atributos espaciais variáveis no tempo. Além disso, este trabalho define um conjunto de operadores espaço temporais que poderia ser útil na consulta de data warehouses espaço temporais. Diferentemente de propostas existentes, nossos operadores integram não só operadores multidimensionais e espaciais, mas também espaciais e temporais (i.e., espaço temporais) em uma única sintaxe. Um esquema taxonômico, o qual classifica os operadores propostos, também é definido. A importância da taxonomia proposta é que ajuda no desenvolvimento de tecnologia OLAP espaço temporal. Com o objetivo de automatizar a modelagem de esquemas espaço temporais, uma ferramenta CASE foi desenvolvida. Além de permitir a definição de esquemas conformes com o modelo conceitual proposto, esta ferramenta também permite a geração automática do esquema lógico correspondente usando uma abordagem objeto relacional. As ideias propostas são validadas com um estudo de caso na área meteorológica. O estudo apresenta uma aplicação prática do modelo conceitual espaço temporal e dos operadores espaço temporais apresentados neste trabalho
Filannino, Michele. "Data-driven temporal information extraction with applications in general and clinical domains". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/datadriven-temporal-information-extraction-with-applications-in-general-and-clinical-domains(34d7e698-f8a8-4fbf-b742-d522c4fe4a12).html.
Texto completoMawilmada, Pubudika Kumari. "Impact of a data warehouse model for improved decision-making process in healthcare". Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/47532/1/Pubudika_Mawilmada_Thesis.pdf.
Texto completoDietrich, Georg [Verfasser] y Frank [Gutachter] Puppe. "Ad Hoc Information Extraction in a Clinical Data Warehouse with Case Studies for Data Exploration and Consistency Checks / Georg Dietrich ; Gutachter: Frank Puppe". Würzburg : Universität Würzburg, 2019. http://d-nb.info/1191102610/34.
Texto completoKoylu, Caglar. "A Case Study In Weather Pattern Searching Using A Spatial Data Warehouse Model". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609573/index.pdf.
Texto completoHagen, Matthew. "Biological and clinical data integration and its applications in healthcare". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54267.
Texto completoLluch-Ariet, Magí. "Contributions to efficient and secure exchange of networked clinical data : the MOSAIC system". Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/388037.
Texto completoScheufele, Elisabeth Lee. "Medication recommendations vs. peer practice in pediatric levothyroxine dosing : a study of collective intelligence from a clinical data warehouse as a potential model for clinical decision support". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/47854.
Texto completoIncludes bibliographical references.
Clinical decision support systems (CDSS) are developed primarily from knowledge gleaned from evidence-based research, guidelines, trusted resources and domain experts. While these resources generally represent information that is research proven, time-tested and consistent with current medical knowledge, they lack some qualities that would be desirable in a CDSS. For instance, the information is presented as generalized recommendations that are not specific to particular patients and may not consider certain subpopulations. In addition, the knowledge base that produces the guidelines may be outdated and may not reflect real-world practice. Ideally, resources for decision support should be timely, patient-specific, and represent current practice. Patient-oriented clinical decision support is particularly important in the practice of pediatrics because it addresses a population in constant flux. Every age represents a different set of physiological and developmental concerns and considerations, especially in medication dosing patterns. Patient clinical data warehouses (CDW) may be able to bridge the knowledge gap. CDWs contain the collective intelligence of various contributors (i.e. clinicians, administrators, etc.) where each data entry provides information regarding medical care for a patient in the real world. CDWs have the potential to provide information as current as the latest upload, be focused to specific subpopulations and reflect current clinical practice. In this paper, I study the potential of a well-known patient clinical data warehouse to provide information regarding pediatric levothyroxine dosing as a form of clinical decision support. I study the state of the stored data, the necessary data transformations and options for representing the data to effectively summarize and communicate the findings.
(cont.) I also compare the resulting transformed data, representing actual practice within this population, against established dosing recommendations. Of the transformed records, 728 of the 854 (85.2%, [95% confidence interval 82.7:87.6]) medication records contained doses that were under the published recommended range for levothyroxine. As demonstrated by these results, real world practice can diverge from established recommendations. Delivering this information on real-world peer practice medication dosing to clinicians in real-time offers the potential to provide a valuable supplement to established dosing guidelines, enhancing the general and sometimes static dosing recommendations.
by Elisabeth Lee Scheufele.
S.M.
Malinowski, Gajda Elzbieta. "Designing conventional, spatial, and temporal data warehouses: concepts and methodological framework". Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210837.
Texto completoA data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process.
DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail.
Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems.
In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them.
On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise.
However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data.
With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others.
Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions.
Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model.
In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs.
Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects.
In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process.
To ensure the correctness of the proposed conceptual models, i.e. with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Hu, Yang. "Temporal Change in the Power Production of Real-world Photovoltaic Systems Under Diverse Climatic Conditions". Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1481295879868785.
Texto completoOsop, Hamzah Bin. "A practice-based evidence approach for clinical decision support". Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/123320/2/Hamzah%20Bin%20Osop%20Thesis.pdf.
Texto completoJoaquim, Neto Cesar. "Análise de desempenho de consultas OLAP espaçotemporais em função da ordem de processamento dos predicados convencional, espacial e temporal". Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8056.
Texto completoApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:30:58Z (GMT) No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:31:04Z (GMT) No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5)
Made available in DSpace on 2016-10-20T19:31:09Z (GMT). No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5) Previous issue date: 2016-03-08
Não recebi financiamento
By providing ever-growing processing capabilities, many database technologies have been becoming important support tools to enterprises and institutions. The need to include (and control) new data types to the existing database technologies has brought also new challenges and research areas, arising the spatial, temporal, and spatiotemporal databases. Besides that, new analytical capabilities were required facilitating the birth of the data warehouse technology and, once more, the need to include spatial or temporal data (or both) to it, thus originating the spatial, temporal, and spatio-temporal data warehouses. The queries used in each database type had also evolved, culminating in the STOLAP (Spatio Temporal OLAP) queries, which are composed of predicates dealing with conventional, spatial, and temporal data with the possibility of having their execution aided by specialized index structures. This work’s intention is to investigate how the execution of each predicate affects the performance of STOLAP queries by varying the used indexes, their execution order and the query’s selectivity. Bitmap Join Indexes will help in conventional predicate’s execution and in some portions of the temporal processing, which will also count with the use of SQL queries for some of the alternatives used in this research. The SB-index and HSB-index will aid the spatial processing while the STB-index will be used to process temporal and spatial predicates together. The expected result is an analysis of the best predicate order while running the queries also considering their selectivity. Another contribution of this work is the evolution of the HSB-index to a hierarchized version called HSTB-index, which should complement the execution options.
Por proverem uma capacidade de processamento de dados cada vez maior, várias tecnologias de bancos de dados têm se tornado importantes ferramentas de apoio a empresas e instituições. A necessidade de se incluir e controlar novos tipos de dados aos bancos de dados já existentes fizeram também surgir novos desafios e novas linhas de pesquisa, como é o caso dos bancos de dados espaciais, temporais e espaçotemporais. Além disso, novas capacidades analíticas foram se fazendo necessárias culminando com o surgimento dos data warehouses e, mais uma vez, com a necessidade de se incluir dados espaciais e temporais (ou ambos) surgindo os data warehouses espaciais, temporais e espaço-temporais. As consultas relacionadas a cada tipo de banco de dados também evoluíram culminando com as consultas STOLAP (Spatio-Temporal OLAP) que são compostas basicamente por predicados envolvendo dados convencionais, espaciais e temporais e cujo processamento pode ser auxiliado por estruturas de indexação especializadas. Este trabalho pretende investigar como a execução de cada um dos tipos de predicados afeta o desempenho de consultas STOLAP variando-se os índices utilizados, a ordem de execução dos predicados e a seletividade das consultas. Índices Bitmap de Junção auxiliarão na execução dos predicados convencionais e de algumas partes dos predicados temporais que também contarão com o auxílio de consultas SQL, enquanto os índices SB-index e HSB-index serão utilizados para auxiliar na execução dos predicados espaciais das consultas. O STB-index também será utilizado nas comparações e envolve ambos os predicados espacial e temporal. Espera-se obter uma análise das melhores opções de combinação de execução dos predicados em consultas STOLAP tendo em vista também a seletividade das consultas. Outra contribuição deste trabalho é a evolução do HSB-index para uma versão hierarquizada chamada HSTB-index e que servirá para complementar as opções de processamento de consultas STOLAP.
Goncy, Elizabeth A. "Conflict and Temporal and Relational Spillover of Conflict in Young Adult Romantic Relationships: Impact of Interparental and Parent-Child Relationships". Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310482081.
Texto completoJouhet, Vianney. "Automated adaptation of Electronic Heath Record for secondary use in oncology". Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0373/document.
Texto completoWith the increasing adoption of Electronic Health Records (EHR), the amount of data produced at the patient bedside is rapidly increasing. Secondary use is there by an important field to investigate in order facilitate research and evaluation. In these work we discussed issues related to data representation and semantics within EHR that need to be address in order to facilitate secondary of structured data in oncology. We propose and evaluate ontology based methods for heterogeneous diagnosis terminologies integration in oncology. We then extend obtained model to enable tumoral disease representation and links with diagnosis as recorded in EHR. We then propose and implement a complete architecture combining a clinical data warehouse, a metadata registry and web semantic technologies and standards. This architecture enables syntactic and semantic integration of a broad range of hospital information System observation. Our approach links data with external knowledge (ontology), in order to provide a knowledge resource for an algorithm for tumoral disease identification based on diagnosis recorded within EHRs. As it based on the ontology classes, the identification algorithm is uses an integrated view of diagnosis (avoiding semantic heterogeneity). The proposed architecture leading to algorithm on the top of an ontology offers a flexible solution. Adapting the ontology, modifying for instance the granularity provide a way for adapting aggregation depending on specific needs
SABAINI, Alberto. "Temporal Data Analysis and Mining. A Multidimensional Approach and its Application in a Medical Domain". Doctoral thesis, 2015. http://hdl.handle.net/11562/911786.
Texto completoThe increasing amount of data available in all sectors is raising the need for decision makers to perform sophisticated analyses for dealing with today's high competitive world. Several databases are needed for decision-makers in order to be able to analyze an organization as a whole. These data sources are often scattered, and not uniform among each other in content and format. Their integration is crucial for the decision-making process, and advanced analyses are needed for such a crucial task. This problem may be solved by the data warehousing approach. Data warehouses can be queried and analyzed by means of Online Analytical Processing (OLAP) and Data Mining tools. Decision support systems have been recently dedicated to medical applications. Conventional multidimensional approaches prove not to suffice clinical domain requirements in terms of representation and advanced temporal support. Time is an important and pervasive concept of the real world that needs to be adequately modeled. Indeed, clinical domains are characterized by several temporal aspects. For instance, therapies may be characterized by a start, an end, a first drug administration dates, and so on. In this thesis we first deal with the design and development of a business intelligence solution for pharmacovigilance tasks. Such a system, called VigiSegn, has been created in the context of a project in collaboration the Italian Ministry of Health on drugs surveillance over the Italian territory. We focus on domain expert needs for analyzing and assessing suspected adverse drug reaction cases. Such needs were not satisfied by current data models. We address advanced modeling aspects for multidimensional structures by paying particular attention to data temporal features. We provide a formal definition of a multidimensional model for representing complex facts, addressing the issue of adequately represent interactions between multidimensional cubes. We provide a further extension of the proposed model by underlying the importance of considering both point-based and interval-based semantics when analyzing temporal data. This include advanced interval based temporal operations, and trend discovery. We also provide a sound data mining algorithm. The attention is focused on mining (approximate) temporal functional dependencies based on a temporal grouping of tuples.
Tseng, Chin-shun y 曾勁順. "A Framework of Object-Relational Data Warehouse for Clinical Data Integration". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/91352395391660316708.
Texto completo義守大學
資訊管理學系碩士班
93
In recent years, with the development of the medical informatics and the rapid change of the medical organization management environment, how to integrate effectively the intra of medical information in order to aid analysis the decision level has already become a new agitation of medical informatics. For this reason, a lot of medium-and-large-sized medical organizations have set about introducing the so-called clinical data warehouse system at every moment and hope to use the well-established data warehouse structure in the business world to meet the information demand for various medical decisions and analyses. However, the current data warehouse system is built upon the relation database, the star-schema is only suitable for dealing with the characters, numeral, and it is a multi-dimension statistical analysis of observing the field change of number value directly. With regard to a great deal of non-characters and non-numeral medical data, such as comprehensive image file for instance the X-ray, ECG, Ultrasound, CT and prescription, etc., it is unable to offer effectively organization, store, integration and analysis of heterogeneous data. For this reason, in this research, we propose a new data warehouse architecture based on the Object-Relational Database, and propose a data model which is suitable for the Object-Relational data warehouse. The feasibility of the proposed data model is illustrated with the construction of the clinical data warehouse and data mart over some disease instances.
Zhou, X., B. Liu, X. Zhang, Q. Xie, R. Zhang, Y. Wang y Yonghong Peng. "Data mining in real-world traditional Chinese medicine clinical data warehouse". 2014. http://hdl.handle.net/10454/10832.
Texto completoReal-world clinical setting is the major arena of traditional Chinese medicine (TCM) as it has experienced long-term practical clinical activities, and developed established theoretical knowledge and clinical solutions suitable for personalized treatment. Clinical phenotypes have been the most important features captured by TCM for diagnoses and treatment, which are diverse and dynamically changeable in real-world clinical settings. Together with clinical prescription with multiple herbal ingredients for treatment, TCM clinical activities embody immense valuable data with high dimensionalities for knowledge distilling and hypothesis generation. In China, with the curation of large-scale real-world clinical data from regular clinical activities, transforming the data to clinical insightful knowledge has increasingly been a hot topic in TCM field. This chapter introduces the application of data warehouse techniques and data mining approaches for utilizing real-world TCM clinical data, which is mainly from electronic medical records. The main framework of clinical data mining applications in TCM field is also introduced with emphasizing on related work in this field. The key points and issues to improve the research quality are discussed and future directions are proposed.
Mantovani, Matteo. "Approximate Data Mining Techniques on Clinical Data". Doctoral thesis, 2020. http://hdl.handle.net/11562/1018039.
Texto completoOliveira, Vitor Hugo Fernandes. "Conceção de um data warehouse espácio-temporal para análise de trajetórias humanas". Master's thesis, 2013. http://hdl.handle.net/10451/9874.
Texto completoCom a evolução das tecnologias móveis à disposição dos utilizadores, tem ocorrido um aumento significativo do volume de dados produzidos a partir destes dispositivos. A disponibilização destas grandes quantidades de informação, por exemplo, sobre a localização de utilizadores móveis e respetivas trajetórias, potencia o conhecimento e o estudo sobre as atividades, preferências, padrões de comportamento e de mobilidade desses utilizadores no espaço e no tempo. De modo a extrair informação útil e relevante é fundamental a conceção de métodos adequados para o tratamento, análise, descoberta de conhecimento e prospeção de dados. Contudo, os dados existentes sobre a mobilidade humana apresentam ainda redundâncias, incoerências, pouca informação semântica e ainda são escassas as soluções de descoberta de conhecimento e algoritmos de prospeçção de dados especialmente concebidos para dados espácio-temporais. Neste projeto ´e proposto um modelo de um Data Warehouse Espácio-temporal de trajetórias humanas, assim como os processos necessários para o tratamento de dados e o seu enriquecimento com informação, tais como extração de pontos de estadia e um algoritmo para a descoberta de utilizadores semelhantes baseado em informação geográfica. Este modelo tem como finalidade criar as bases para a concretização de aplicações e algoritmos de deteção de comportamentos e atividades de utilizadores móveis, sendo testado num exemplo concreto, o conjunto de dados Geolife, para uma população de 182 utilizadores com cerca de 24 milhões pontos geolocalizados em trajetórias. Os resultados mostram que o sistema desenvolvido permite níveis de análise de grande complexidade, possibilitando simultaneamente uma grande flexibilidade para processamento analítico, apresentando a sua utilidade para processos de negócio como planeamento urbano, análise de tráfego e análise de perfil de utilizadores.
With the evolution of mobile technologies available to users, there has been an significant growth of the volume of data generated from these devices. The availability of these large quantities of information, for example, about the location of mobile users and their trajectories, enhances the knowledge and study on activities, preferences, behavior patterns and mobility of those users in both space and time. In order to extract useful and relevant information is critical to designing appropriate methods for processing, analysis, knowledge discovery and data mining. However, the existing data on human mobility have still redundancies, inconsistencies, poor semantic information and are still scarce solutions of knowledge discovery and data mining algorithms specially designed for this type of spatio-temporal data. This thesis proposes a model of a Spatio-Temporal DataWarehouse of human trajectories, as well processes required for data processing and enrichment with semantic information, such as extraction of stay points and an algorithm for finding similar users based on geographic information. This model aims to lay the groundwork for the development of applications and algorithms for detection of behaviors and activities of mobile users, being tested in a concrete example, the data set Geolife for a population of 182 users with about 24 million points geolocated trajectories. The results show that the developed system allows analysis levels of complexity, while allowing great flexibility for analytical processing, showing its usefulness for business processes such as urban planning, traffic analysis and users profile analysis.
Tavazzi, Erica. "Exploiting the temporal dimension in clinical data mining". Doctoral thesis, 2020. http://hdl.handle.net/11577/3359241.
Texto completoCheng, Jay Jojo. "On identifying polycystic ovary syndrome in the Clinical Data Warehouse at Boston Medical Center". Thesis, 2017. https://hdl.handle.net/2144/23764.
Texto completoDietrich, Georg. "Ad Hoc Information Extraction in a Clinical Data Warehouse with Case Studies for Data Exploration and Consistency Checks". Doctoral thesis, 2019. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-184642.
Texto completoDie Bedeutung von Clinical Data Warehouses (CDW) hat in den letzten Jahren stark zugenommen, da sie viele Anwendungen wie klinische Studien, Data Mining und Entscheidungsfindung unterstützen oder ermöglichen. CDWs integrieren elektronische Patientenakten, die neben strukturierten und kodierten Daten wie ICD-Codes von Diagnosen immer noch sehr vielen Textdaten enthalten, sowie Arztbriefe oder Befundberichte. Bestehende CDWs unterstützen kaum Funktionen, um die in den Texten enthaltenen Informationen zu nutzen. Informationsextraktionsmethoden bieten zwar eine Lösung für dieses Problem, erfordern aber einen hohen und langen Entwicklungsaufwand, der nur von Informatikern durchgeführt werden kann. Außerdem gibt es solche Systeme nur für wenige medizinische Bereiche. Diese Arbeit stellt eine Methode vor, die es Ärzten ermöglicht, Informationen aus Texten selbstständig zu extrahieren. Medizinische Konzepte können ad hoc aus Texten (z. B. Arztbriefen) extrahiert werden, so dass Ärzte unverzüglich und autonom arbeiten können. Das vorgestellte System erreicht diese Verbesserungen durch effiziente Datenspeicherung, Vorverarbeitung und leistungsstarke Abfragefunktionen. Negationen in Texten werden erkannt und automatisch ausgeschlossen, ebenso wird der Kontext von Informationen bestimmt und unerwünschte Fakten gefiltert, wie z. B. historische Ereignisse oder ein Bezug zu anderen Personen (Familiengeschichte). Kontextsensitive Abfragen gewährleisten die semantische Integrität der zu extrahierenden Konzepte. Eine neue Funktion, die in anderen CDWs nicht verfügbar ist, ist die Abfrage numerischer Konzepte in Texten und sogar deren Filterung (z. B. BMI > 25). Die abgerufenen Werte können extrahiert und zur weiteren Analyse exportiert werden. Diese Technik wird innerhalb der effizienten Architektur des PaDaWaN-CDW implementiert und mit umfangreichen und aufwendigen Tests evaluiert. Die Ergebnisse übertreffen ähnliche Ansätze, die in der Literatur beschrieben werden. Ad hoc IE ermittelt die Ergebnisse in wenigen (Milli-)Sekunden und die benutzerfreundliche Oberfläche ermöglicht interaktives Arbeiten und eine flexible Anpassung der Extraktion. Darüber hinaus wird die Anwendbarkeit dieses Systems in drei realen Anwendungen am Universitätsklinikum Würzburg (UKW) demonstriert: Mehrere Medikationstrendstudien werden repliziert: Die Ergebnisse aus fünf Studien zu Bluthochdruck, Vorhofflimmern und chronischem Nierenversagen können in dem UKW teilweise oder vollständig bestätigt werden. Eine weitere Fallstudie bewertet die Prävalenz von Herzinsuffizienz in stationären Patienten in Krankenhäusern mit einem Algorithmus, der Informationen mit Ad-hoc-IE aus Arztbriefen, Echokardiogrammbericht und aus anderen Quellen des Krankenhausinformationssystems extrahiert (z. B. LVEF < 45). Diese Studie zeigt, dass die Verwendung von ICD-Codes zu einer signifikanten Unterschätzung (31%) der tatsächlichen Prävalenz von Herzinsuffizienz führt. Die dritte Fallstudie bewertet die Konsistenz von Diagnosen, indem sie strukturierte ICD-10-codierte Diagnosen mit den Diagnosen, die im Diagnoseabschnitt des Arztbriefes beschriebenen, vergleicht. Diese Diagnosen werden mit Ad-hoc-IE aus den Texten gewonnen, dabei werden Synonyme verwendet, die mit einer neuartigen Methode generiert werden. Der verwendete Ansatz kann Diagnosen mit hoher Genauigkeit aus Arztbriefen extrahieren und darüber hinaus den Grad der Übereinstimmung zwischen den kodierten und beschriebenen Diagnosen bestimmen
Soares, Diogo Filipe Marques. "Learning predictive models from temporal three-way data using triclustering: applications in clinical data analysis". Master's thesis, 2020. http://hdl.handle.net/10451/48139.
Texto completoO conceito de triclustering estende o conceito de biclustering para um espaço tridimensional, cujo o objetivo é encontrar subespaços coerentes em dados tridimensionais. Considerando dados com dimensão temporal, a necessidade de aprender padrões temporais interessantes e usá-los para aprender modelos preditivos efetivos e interpretáveis, despoleta necessidade em investigar novas metodologias para análise de dados tridimensionais. Neste trabalho, propomos duas metodologias para esse efeito. Na primeira metodologia, encontramos os melhores parâmetros a serem usados em triclustering para descobrir os melhores triclusters (conjuntos de objetos com um padrão coerente ao longo de um dado conjunto de pontos temporais) para que depois estes padrões sejam usados como features por um dos mais apropriados classificadores encontrados na literatura. Neste caso, propomos juntar o classificador com uma abordagem de triclustering temporal. Para isso, idealizámos um algoritmo de triclustering com uma restrição temporal, denominado TCtriCluster para desvendar triclusters temporalmente contínuos (constituídos por pontos temporais contínuos). Na segunda metodologia, adicionámos uma fase de biclustering para descobrir padrões nos dados estáticos (dados que não mudam ao longo do tempo) e juntá-los aos triclusters para melhorar o desempenho e a interpretabilidade dos modelos. Estas metodologias foram usadas para prever a necessidade de administração de ventilação não invasiva (VNI) em pacientes com Esclerose Lateral Amiotrófica (ELA). Neste caso de estudo, aprendemos modelos de prognóstico geral, para os dados de todos os pacientes, e modelos especializados, depois de feita uma estratificação dos pacientes em 3 grupos de progressão: Lentos, Neutros e Rápidos. Os resultados demonstram que, além de serem bastante equiparáveis e por vezes superiores quando comparados com os resultados obtidos por um classificador de alto desempenho (Random Forests), os nossos classificadores são capazes de refinar as previsões através das potencialidades da interpretabilidade do modelo. De facto, quando usados os triclusters (e biclusters) como previsores, estamos a promover o uso de padrões de progressão da doença altamente interpretáveis. Para além disso, quando usados para previsão de prognóstico em doentes com ELA, os nossos modelos preditivos interpretáveis desvendaram padrões clinicamente relevantes para um grupo específico de padrões de progressão da doença, ajudando os médicos a entender a elevada heterogeneidade da progressão da ELA. Os resultados mostram ainda que a restrição temporal tem impacto na melhoria da efetividade e preditividade dos modelos.
Triclustering extends biclustering to the three-dimensional space, aiming to find coherent subspaces in three-way data (sets of objects described by subsets of features in a subset of contexts). When the context is time, the need to learn interesting temporal patterns and use them to learn effective and interpretable predictive models triggers the need for new research methodologies to be used in three-way data analysis. In this work, we propose two approaches to learn predictive models from three-way data: 1) a triclustering-based classifier (considering just temporal data) and 2) a mixture of biclustering (with static data) and triclustering (with temporal data). In the first approach, we find the best triclustering parameters to uncover the best triclusters (sets of objects with a coherent pattern along a set of time-points) and then use these patterns as features in a state-of-the-art classifier. In the case of temporal data, we propose to couple the classifier with a temporal triclustering approach. With this aim, we devised a temporally constrained triclustering algorithm, termed TCtriCluster algorithm to mine time-contiguous triclusters. In the second approach, we extended the triclustering-based classifier with a biclustering task, where biclusters are discovered in static data (not changed over the time) and integrated with triclusters to improve performance and model explainability. The proposed methodologies were used to predict the need for non-invasive ventilation (NIV) in patients with Amyotrophic Lateral Sclerosis (ALS). In this case study, we learnt a general prognostic model from all patients data and specialized models after patient stratification into Slow, Neutral and Fast progressors. Our results show that besides comparable and sometimes outperforming results, when compared to a high performing random forest classifier, our predictive models enhance prediction with the potentialities of model interpretability. Indeed, when using triclusters (and biclusters) as predictors, we promoting the use of highly interpretable disease progression patterns. Furthermore, when used for prognostic prediction in ALS, our interpretable predictive models unravelled clinically relevant and group-specific disease progression patterns, helping clinicians to understand the high heterogeneity of ALS disease progression. Results further show that the temporal restriction is effective in improving the effectiveness of the predictive models.
Lin, Sheng-Hui y 林昇輝. "Data warehouse approach to build a decision-support platform for orthopedics based on clinical and academic requirements". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/19788328253537026226.
Texto completo臺北醫學大學
醫學資訊研究所
97
The continuous quality improvement has become a trend in the contemporary medical society, and that can be achieved by the specialty database implement. Decision-support system in the academic and clinical aspects are included in the process such continuous quality improvement. The database has its limitation in the decision-support due to deficiency of on-line analytic function. The data warehouse offers the sophisticated function for decision-support processes. However, the implement of data warehouse may face a lot of obstacles, included expensive cost and large personnel. We had previously established a database of orthopedics, which collected the patients’ data since 2002. The new system was constructed based on this specialty database, the knowledge architectures was build up via specialists committee and accreditation indicators. The major function was to generate sufficient information for decision-support process in the academic and clinical aspects. The execution efficiency of this system is more effective than database. The unique knowledge architecture can form a distinguishing feature of the department. The cost that saved from personnel and time reduced from reports generation for accreditation is remarkable. The stratification of web-based interface application can be assessed through questionnaires; the outcome is satisfactory as what we previously expected. The sophisticate function of the data warehouse is hard to express in a solitary department of the hospital, especially when they had already owned traditional database. The experience of this system construction can be useful as one option for upgrade of specialty database and a step forward to the goal of the continuous quality improvemen
Carneiro, Brian Neil. "Clinical intelligence: definição de processos de ETL e DW". Master's thesis, 2017. http://hdl.handle.net/1822/53104.
Texto completoO Centro Hospitalar do Porto (CHP) é considerado uma referência na área do transplante da córnea, tendo realizado até ao momento mais de 4000 transplantes. Por sua vez, a córnea é o tecido mais transplantado no mundo e é por norma, o principal método para recuperar de cegueira causada por doenças nesse mesmo tecido. Face à importância desta área para o CHP, surgiu a necessidade do estudo do processo de transplante da córnea através de uma solução de Clinical Intelligence (CI). A finalidade desta dissertação incidiu no desenvolvimento de uma solução de CI capaz de apoiar a decisão dos clínicos e gestores do CHP sobre o processo de transplante de córnea, não só na perspetiva dos dados inerentes aos utentes, mas também do próprio transplante e lista de espera. O protótipo de CI, como definido inicialmente, continha a componente de Business Intelligence (BI), com o foco na definição dos processos de extração, transformação e carregamento dos dados para o Data Warehouse (DW). Posteriormente surgiu a possibilidade de incorporar técnicas de Data Mining, (DM), que permitiram, sobretudo, efetuar previsões sobre as prioridades de cirurgia e do tempo de espera do utente. Para a conceção do protótipo de CI foram seguidas três metodologias: Design Science Research, como abordagem principal do desenvolvimento do trabalho; Kimball’s lifecycle para a elaboração do DW e o Cross-Industry Standard Process for Data Mining para o processo de DM. Na perspetiva de BI, o protótipo permite compreender as características inerentes aos procedimentos, diagnósticos, utentes e a relação entre eles. Para além disso, proporciona uma análise sobre o fluxo de entrada e saída dos utentes, bem como o tempo média de espera, em dias, entre os mesmos. Na perspetiva de DM foram criados modelos capazes de prever o tempo de espera de um utente assim como as prioridades dos procedimentos de cariz normal, cumprindo com os padrões de aceitação do CHP (Sensibilidade>= 0,85; Precisão>= 0,75). Os melhores modelos obtiveram valores de sensibilidade e acuidade de 95% e 83 % ou 93% e 82% respetivamente, para certas classes dos targets. Numa perspetiva global de CI, o protótipo assegura a integração e a qualidade dos dados, assim como a manipulação eficiente desses dados através de relatórios, contribuindo com informação otimizada para os clínicos e gestores do CHP. As integrações dos modelos de DM no BI proporcionam uma maior eficiência na monotorização do estado de saúde do utente e dos recursos logísticos e humanos do CHP. Em suma, foram desenvolvidos 32 relatórios de visualização, 42 métricas de negócio e 320 modelos de DM juntamente com três artigos científicos de forma a disseminar o trabalho desenvolvido.
The Hospital Center of Porto (CHP) is considered a reference in the field of corneal transplantation, and has performed 4000 transplants so far. The cornea is the most transplanted tissue in the world and is usually, the main method to recover from blindness caused by diseases in this tissue. Thus, the study of the corneal transplantation process through a Clinical Intelligence (CI) solution was considered a priority for the CHP. The purpose of this dissertation consisted on the development of a CI prototype capable of supporting the decision of the CHP physicians and managers regarding the corneal transplantation process, not only from the perspective of the patient’s information, but also from the transplant itself and the waiting list. The prototype, as defined from the beginning, contained the Business Intelligence (BI) component, focusing on the extraction, transformation and loading processes of the data into the Data Warehouse (DW). Afterwards, the possibility of incorporating Data Mining (DM) emerged, which allowed to make predictions regarding certain targets. Furthermore, the development of the CI prototype followed three methodologies: Design Science Research, as the main approach for the work development; Kimball's lifecycle for the development of the DW and the Cross-Industry Standard Process for Data Mining for the DM process. In the BI perspective, the CI prototype allows the understanding of the procedures, diagnoses, patients characteristics and the relationship between them. In addition, it provides an analysis of the inflow and outflow of patients, as well as the average waiting time, in days, between them. From the DM perspective, models capable of predicting the patient’s waiting time as well as the procedural priority were created. The best models obtained sensitivity and accuracy values of 95%- 83% or 93%- 82% respectively for certain target classes. From a global perspective, the CI prototype ensures the data integration and quality, as well as an efficient reporting of these data, hence contributing with optimized information for CHP’s physicians and managers. The integration of DM models into BI provide greater efficiency in monitoring the patient’s health as well as the logistics and human resources of the CHP. In summary, 29 visualization reports, 42 business metrics and 320 DM models were developed along with three scientific articles in order to disseminate the developed solution.
Mehrabi, Saeed. "Advanced natural language processing and temporal mining for clinical discovery". 2015. http://hdl.handle.net/1805/8895.
Texto completoThere has been vast and growing amount of healthcare data especially with the rapid adoption of electronic health records (EHRs) as a result of the HITECH act of 2009. It is estimated that around 80% of the clinical information resides in the unstructured narrative of an EHR. Recently, natural language processing (NLP) techniques have offered opportunities to extract information from unstructured clinical texts needed for various clinical applications. A popular method for enabling secondary uses of EHRs is information or concept extraction, a subtask of NLP that seeks to locate and classify elements within text based on the context. Extraction of clinical concepts without considering the context has many complications, including inaccurate diagnosis of patients and contamination of study cohorts. Identifying the negation status and whether a clinical concept belongs to patients or his family members are two of the challenges faced in context detection. A negation algorithm called Dependency Parser Negation (DEEPEN) has been developed in this research study by taking into account the dependency relationship between negation words and concepts within a sentence using the Stanford Dependency Parser. The study results demonstrate that DEEPEN, can reduce the number of incorrect negation assignment for patients with positive findings, and therefore improve the identification of patients with the target clinical findings in EHRs. Additionally, an NLP system consisting of section segmentation and relation discovery was developed to identify patients' family history. To assess the generalizability of the negation and family history algorithm, data from a different clinical institution was used in both algorithm evaluations.
Mendes, Celso Rafael Clara. "Visão e Análise Temporal do Processo Clínico". Master's thesis, 2016. http://hdl.handle.net/10316/99229.
Texto completoAtualmente, processos clínicos de utentes podem ser consideravelmente extensos, contendo desde informação relativa a exames realizados até a problemas de saúde que possam existir. Atendendo à extensão dos dados que podem existir, a sua análise e visualização torna-se difícil. Adicionalmente, para além de a leitura e interpretação se tratar de um processo moroso, a informação pode ainda estar em diferentes documentos/ localizações, por vezes em relatórios e sem se encontrar totalmente formatada. Uma possível solução para facilitar, e em geral melhorar, o processo é a utilização de uma visualização que reduza o esforço cognitivo e permita mais rapidamente identificar e extrair a informação relevante e tirar conclusões. Neste projeto tenho como objetivo estudar e implementar a solução identificada, para que um profissional de saúde possa rapidamente e com qualidade visualizar a informação clínica e facilmente entender as necessidades do utente. Na linha do tempo o profissional clínico terá ao seu dispor diferentes formas de visualizar a informação, desde a visualização da situação clínica atual, análise do histórico clínico e até mesmo entender as necessidades clínicas que o utente possa vir a ter no futuro, tais como, vacinas, exames periódicos, etc.. De forma a enriquecer os dados disponíveis também se pretende fornecer ao profissional clínico informação sobre a possibilidade de um paciente poder vir a contrair uma determinada patologia. Neste documento é possível observar o trabalho desenvolvido neste âmbito e as vantagens que este projeto trará para a área em questão.
Patients’ clinical processes can be considerably extensive, containing information from clinical test results to diagnosed health issues. Taking in account the volume of data that might accumulate, visualising and analysing it becomes a complex task. On top of how slow the process of reading and interpreting the data is, the relevant information might be spread across distinct documents/locations and in unstructured formats. A possible solution to ease, and generally improve, this process is using a better visualization aimed at reducing the cognitive effort and speeding the identification and extraction of the relevant information as well as the conclusions that might follow. The objective of the project is the research and implementation of the proposed solution, empowering medical personnel with high quality and fast means of clinical information acquisition and analysis. A direct benefit is giving the medical professional a clear view of the patient’s state and help him better understand their needs. On the timeline, the clinical professional will have at their disposal a myriad of ways to visualize not only the current clinical data but the past history as well. Additional, possible future needs, such as vaccinations, periodic clinical tests, etc. With the objective of enriching the data available to the healthcare professionals, the visualization, will also contain indication of pathologies a patient might contract as a result of their medical history and lifestyle. This document details the efforts undertaken in this scope as well as exposing the resulting advantages to the healthcare field.
Zeman, Philip Michael. "Feasibility of Multi-Component Spatio-Temporal Modeling of Cognitively Generated EEG Data and its Potential Application to Research in Functional Anatomy and Clinical Neuropathology". Thesis, 2009. http://hdl.handle.net/1828/5010.
Texto completoGraduate
0541
0622
0623
Nouri, Golmaei Sara. "Improving the Performance of Clinical Prediction Tasks by using Structured and Unstructured Data combined with a Patient Network". Thesis, 2021. http://dx.doi.org/10.7912/C2/41.
Texto completoWith the increasing availability of Electronic Health Records (EHRs) and advances in deep learning techniques, developing deep predictive models that use EHR data to solve healthcare problems has gained momentum in recent years. The majority of clinical predictive models benefit from structured data in EHR (e.g., lab measurements and medications). Still, learning clinical outcomes from all possible information sources is one of the main challenges when building predictive models. This work focuses mainly on two sources of information that have been underused by researchers; unstructured data (e.g., clinical notes) and a patient network. We propose a novel hybrid deep learning model, DeepNote-GNN, that integrates clinical notes information and patient network topological structure to improve 30-day hospital readmission prediction. DeepNote-GNN is a robust deep learning framework consisting of two modules: DeepNote and patient network. DeepNote extracts deep representations of clinical notes using a feature aggregation unit on top of a state-of-the-art Natural Language Processing (NLP) technique - BERT. By exploiting these deep representations, a patient network is built, and Graph Neural Network (GNN) is used to train the network for hospital readmission predictions. Performance evaluation on the MIMIC-III dataset demonstrates that DeepNote-GNN achieves superior results compared to the state-of-the-art baselines on the 30-day hospital readmission task. We extensively analyze the DeepNote-GNN model to illustrate the effectiveness and contribution of each component of it. The model analysis shows that patient network has a significant contribution to the overall performance, and DeepNote-GNN is robust and can consistently perform well on the 30-day readmission prediction task. To evaluate the generalization of DeepNote and patient network modules on new prediction tasks, we create a multimodal model and train it on structured and unstructured data of MIMIC-III dataset to predict patient mortality and Length of Stay (LOS). Our proposed multimodal model consists of four components: DeepNote, patient network, DeepTemporal, and score aggregation. While DeepNote keeps its functionality and extracts representations of clinical notes, we build a DeepTemporal module using a fully connected layer stacked on top of a one-layer Gated Recurrent Unit (GRU) to extract the deep representations of temporal signals. Independent to DeepTemporal, we extract feature vectors of temporal signals and use them to build a patient network. Finally, the DeepNote, DeepTemporal, and patient network scores are linearly aggregated to fit the multimodal model on downstream prediction tasks. Our results are very competitive to the baseline model. The multimodal model analysis reveals that unstructured text data better help to estimate predictions than temporal signals. Moreover, there is no limitation in applying a patient network on structured data. In comparison to other modules, the patient network makes a more significant contribution to prediction tasks. We believe that our efforts in this work have opened up a new study area that can be used to enhance the performance of clinical predictive models.