Literatura académica sobre el tema "Target binding"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Target binding".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Target binding"
Cheung, S. H., G. E. Legge, S. T. L. Chung y B. S. Tjan. "Target-flanker binding releases crowding". Journal of Vision 6, n.º 6 (24 de marzo de 2010): 807. http://dx.doi.org/10.1167/6.6.807.
Texto completoPOOLSAP, UNYANEE, YUKI KATO, KENGO SATO y TATSUYA AKUTSU. "USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs". Journal of Bioinformatics and Computational Biology 09, n.º 06 (diciembre de 2011): 697–713. http://dx.doi.org/10.1142/s0219720011005628.
Texto completoJOHNSTON, Angus y Eva VAN DER MAREL. "How Binding are the EU’s ‘Binding’ Renewables Targets?" Cambridge Yearbook of European Legal Studies 18 (9 de agosto de 2016): 176–214. http://dx.doi.org/10.1017/cel.2016.7.
Texto completoPark, Keunwan, Young-Joon Ko, Prasannavenkatesh Durai y Cheol-Ho Pan. "Machine learning-based chemical binding similarity using evolutionary relationships of target genes". Nucleic Acids Research 47, n.º 20 (31 de agosto de 2019): e128-e128. http://dx.doi.org/10.1093/nar/gkz743.
Texto completoLipovsek, D. "Adnectins: engineered target-binding protein therapeutics". Protein Engineering Design and Selection 24, n.º 1-2 (10 de noviembre de 2010): 3–9. http://dx.doi.org/10.1093/protein/gzq097.
Texto completoChen, Zihao, Long Hu, Bao-Ting Zhang, Aiping Lu, Yaofeng Wang, Yuanyuan Yu y Ge Zhang. "Artificial Intelligence in Aptamer–Target Binding Prediction". International Journal of Molecular Sciences 22, n.º 7 (30 de marzo de 2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Texto completoMolina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, Takahiro Seki, E. Andreas Larsson, Chen Dan, Lekshmy Sreekumar, Yihai Cao y Pär Nordlund. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay". Science 341, n.º 6141 (4 de julio de 2013): 84–87. http://dx.doi.org/10.1126/science.1233606.
Texto completoYim, Hyung-Soon y Jae-Hak Lee. "Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites". Journal of Marine Bioscience and Biotechnology 7, n.º 2 (31 de diciembre de 2015): 35–41. http://dx.doi.org/10.15433/ksmb.2015.7.2.035.
Texto completoGanotra, Gaurav K. y Rebecca C. Wade. "Prediction of Drug–Target Binding Kinetics by Comparative Binding Energy Analysis". ACS Medicinal Chemistry Letters 9, n.º 11 (4 de octubre de 2018): 1134–39. http://dx.doi.org/10.1021/acsmedchemlett.8b00397.
Texto completoHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg y Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction". Proteins: Structure, Function, and Bioinformatics 78, n.º 1 (17 de agosto de 2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Texto completoTesis sobre el tema "Target binding"
Collins, K. M. "Target recognition by multi-domain RNA-binding proteins". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1460867/.
Texto completoBolotin, Eugene Leonidovich. "Investigation of transcription factor binding sequences and target genes using protein binding microarrays". Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019822801&SrchMode=2&sid=3&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274203752&clientId=48051.
Texto completoIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Also issued in print.
Djurberg, Klara. "Applying Model Selection on Ligand-Target Binding Kinetic Analysis". Thesis, KTH, Proteinvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302137.
Texto completoInteraktioner kan analyseras med hjälp av LigandTracer. Data från ett LigandTracer experiment kan sedan analyseras med avseende på en kinetisk modell. Det finns olika kinetiska modeller, och modellvalet motiveras vanligen utifrån tidigare kunskap om interaktionen, vilket är problematiskt när den tillgängliga informationen om en interaktion är otillräcklig. I det här projektet implementerades en Bayesiansk metod för att motivera valet av modell utifrån data från ett LigandTracer experiment. Modellvalsmetoden implementerades för fyra kinetiska modeller, 1:1 modellen, 1:2 modellen, den bivalenta modellen och en ny version av den bivalenta modellen. Bayesiansk inferens användes för att få fram aposteriorifördelningarna för de olika modellernas parametrar utifrån den givna datan. Sedan beräknades Bayes faktor utifrån numeriska approximationer av marginalsannolikeheten. Fyra numeriska metoder implementerades för att approximera marginalsannolikheten; Naïve Monte Carlo estimator, det harmoniska medelvärdet av likelihood-funktionen, Importance Sampling och Sekventiell Monte Carlo. När modellvalsmetoden testades på simulerad data gav metoden Importance Sampling den mest tillförlitliga förutsägelsen om vilken modell som generade datan. Metoden testades också på experimentell data som förväntades följa en 1:1 interaktion och resultatet avvek från det förväntade resultatet. Följaktligen kunde ingen slutsas dras av resultet från modelvalsmetoden när den sedan används för att analysera interaktionen mellan anti-CD antikroppen Rituximab och Daudi-celler.
Zhao, Qian y 赵倩. "Identification of a binding target of triptolide and related studies". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48199163.
Texto completopublished_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Kasturi, Rama. "Kinetics of calmodulin binding to its smooth muscle target proteins /". The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487694702782747.
Texto completoXie, He Fang. "Understanding the interaction between xylan-binding domains and their target ligands". Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324858.
Texto completoChapman, Edwin R. "Functional domains of neuromodulin and the interaction of calmodulin with target peptides /". Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/6288.
Texto completoFarnie, Gillian. "MDM2-p53 binding interaction as a potential therapeutic target for cancer". Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437553.
Texto completoMa, Jun. "Mass Spectrometry Method Development to Identify Binding Ligands Against A2AR Nanodisc Complex". Thesis, Griffith University, 2017. http://hdl.handle.net/10072/380580.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Zhou, Yiqing y 周怡青. "Identification of a cellular target of triptonide and its functional study". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46923561.
Texto completoLibros sobre el tema "Target binding"
Symposium on RNA Biology (2nd 1997 North Carolina Biotechnology Center). Symposium on RNA Biology: RNA tool and target : held at North Carolina Biotechnology Center, Research Triangle Park, North Carolina, USA, October 17-19, 1997. [Oxford]: Oxford University Press, 1997.
Buscar texto completoSnoeck, Eric. Mechanism-based pharmacokinetic-pharmacodynamic modelling of specific target site binding to red blood cells: Application to the development of draflazine. [Leiden: University of Leiden, 1998.
Buscar texto completoPodjarny, Alberto, Annick P. Dejaegere y Bruno Kieffer, eds. Biophysical Approaches Determining Ligand Binding to Biomolecular Targets. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849732666.
Texto completoPonte-Sucre, Alicia. ABC transporters in microorganisms: Research, innovation and value as targets against drug resistance. Norfolk, UK: Caister Academic, 2009.
Buscar texto completoChandrudu, M. V. Rama. Bench marking of APRLP processes: Binding the programs with processes : redefining targets. Secunderabad: WASSAN, 2006.
Buscar texto completoDufau, Maria. Hormone Binding and Target Cell Activation in the Testis. Springer, 2013.
Buscar texto completoDufau, Maria. Hormone Binding and Target Cell Activation in the Testis. Springer, 2012.
Buscar texto completoMatulis, Daumantas. Carbonic Anhydrase as Drug Target: Thermodynamics and Structure of Inhibitor Binding. Springer, 2019.
Buscar texto completoMing, Liang. Identification of DNA-binding domains and target genes of the Hindsight zinc-finger protein. 2006.
Buscar texto completoBaauw, Sergio. The Acquisition of Binding and Coreference. Editado por Jeffrey L. Lidz, William Snyder y Joe Pater. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199601264.013.22.
Texto completoCapítulos de libros sobre el tema "Target binding"
Copeland, Robert A. "Drug-Target Residence Time". En Thermodynamics and Kinetics of Drug Binding, 155–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673025.ch8.
Texto completoNorden, Diana M. y Benjamin J. Doranz. "Testing for Off-target Binding". En Translational Medicine, 117–30. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003124542-13.
Texto completoRodríguez, Santiago, Juan I. Alice, Carolina L. Bellera y Alan Talevi. "Structure-Based Binding Pocket Detection and Druggability Assessment". En Drug Target Selection and Validation, 83–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95895-4_5.
Texto completoKairys, Visvaldas, Kliment Olechnovič, Vytautas Raškevičius y Daumantas Matulis. "In Silico Modeling of Inhibitor Binding to Carbonic Anhydrases". En Carbonic Anhydrase as Drug Target, 215–32. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_15.
Texto completoPaketurytė, Vaida, Asta Zubrienė, Wen-Yih Chen, Sandro Keller, Margarida Bastos, Matthew J. Todd, John E. Ladbury y Daumantas Matulis. "Inhibitor Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry". En Carbonic Anhydrase as Drug Target, 79–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_6.
Texto completoPetrauskas, Vytautas, Asta Zubrienė, Matthew J. Todd y Daumantas Matulis. "Inhibitor Binding to Carbonic Anhydrases by Fluorescent Thermal Shift Assay". En Carbonic Anhydrase as Drug Target, 63–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_5.
Texto completoZubrienė, Asta y Daumantas Matulis. "Observed Versus Intrinsic Thermodynamics of Inhibitor Binding to Carbonic Anhydrases". En Carbonic Anhydrase as Drug Target, 107–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_8.
Texto completoDemchenko, Alexander P. "Basic Theoretical Description of Sensor-Target Binding". En Introduction to Fluorescence Sensing, 37–72. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19089-6_2.
Texto completoSmirnov, Alexey, Elena Manakova y Daumantas Matulis. "Correlations Between Inhibitor Binding Thermodynamics and Co-crystal Structures with Carbonic Anhydrases". En Carbonic Anhydrase as Drug Target, 249–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_17.
Texto completoSkvarnavičius, Gediminas, Daumantas Matulis y Vytautas Petrauskas. "Change in Volume Upon Inhibitor Binding to Carbonic Anhydrases by Fluorescent Pressure Shift Assay". En Carbonic Anhydrase as Drug Target, 97–106. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12780-0_7.
Texto completoActas de conferencias sobre el tema "Target binding"
Li, Mei, Sihan Xu, Xiangrui Cai, Zhong Zhang y Hua Ji. "Contrastive Meta-Learning for Drug-Target Binding Affinity Prediction". En 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022. http://dx.doi.org/10.1109/bibm55620.2022.9995372.
Texto completoZhao, Qichang, Fen Xiao, Mengyun Yang, Yaohang Li y Jianxin Wang. "AttentionDTA: prediction of drug–target binding affinity using attention model". En 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8983125.
Texto completoReyes-Herrera, Paula Helena, Andrea Acquaviva, Elisa Ficarra y Enrico Macii. "MicroRNA Target Prediction and Exploration through Candidate Binding Sites Generation". En 2010 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS). IEEE, 2010. http://dx.doi.org/10.1109/cisis.2010.129.
Texto completoBarroso, Margarida, Alena Rudkouskaya, Jason Smith, John Williams y Xavier Intes. "Antibody-target binding in living tumors using macroscopy fluorescence lifetime imaging". En Multiphoton Microscopy in the Biomedical Sciences XXII, editado por Ammasi Periasamy, Peter T. So y Karsten König. SPIE, 2022. http://dx.doi.org/10.1117/12.2609024.
Texto completoZhijian, Lyu, Jiang Shaohua, Liang Yigao y Gao Min. "GDGRU-DTA: Predicting Drug-Target Binding Affinity based on GNN and Double GRU". En 3rd International Conference on Data Mining and Machine Learning (DMML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120703.
Texto completoUllal, Adeeti V., Thomas Reiner, Katherine S. Yang, Rostic Gorbatov, Changwook Min, David Issadore, Hakho Lee y Ralph Weissleder. "Abstract 1968: Nanoparticle mediated measurement of target-drug binding in cancer cells". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1968.
Texto completoGhazaly, Essam A., John Le Quesne, Dahai Jiang, Selanere L. Mangala, James Chettle, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein et al. "Abstract B30: The RNA-binding protein LARP1 is a cancer therapeutic target". En Abstracts: AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; October 27-30, 2016; San Francisco, CA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.transcontrol16-b30.
Texto completoLennox, Mark, Neil Robertson y Barry Devereux. "Modelling Drug-Target Binding Affinity using a BERT based Graph Neural network". En 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9629695.
Texto completoNguyen, Thai Huu y Qiao Lin. "An Aptamer-Functionalized Microfluidic Platform for Biomolecular Purification and Sensing". En ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82142.
Texto completoVishwakarma, Ajaykumar, Yi Sun, Amina Fu, Emily Robitschek, Arvin Iracheta-Vellve, Susanna Stinson, Aliasger Salem, Robert Manguso y Russell Jenkins. "Abstract B065: TANK-Binding Kinase 1 (TBK1) as a novel cancer immunotherapy target". En Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b065.
Texto completoInformes sobre el tema "Target binding"
Beerman, Terry A. Discovery of DNA Binding Anticancer Drugs That Target Oncogenic Transcription Factors Associated With Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2001. http://dx.doi.org/10.21236/ada403322.
Texto completoDeSombre, E. R. Receptor-DNA binding to target auger electrons for cancer therapy. Final report, August 1, 1993--January 31, 1997. Office of Scientific and Technical Information (OSTI), mayo de 1997. http://dx.doi.org/10.2172/477720.
Texto completoKolodny, Gerald M. y Joel Yisraeli. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2014. http://dx.doi.org/10.21236/ada613755.
Texto completoKolodny, Gerald M. y Joel Yisraeli. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracellular Ligand Specific for Ovarian Cancer. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada594525.
Texto completoRahimipour, Shai y David Donovan. Renewable, long-term, antimicrobial surface treatments through dopamine-mediated binding of peptidoglycan hydrolases. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7597930.bard.
Texto completoWhitham, Steven A., Amit Gal-On y Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, junio de 2012. http://dx.doi.org/10.32747/2012.7593391.bard.
Texto completoFromm, Hillel y Joe Poovaiah. Calcium- and Calmodulin-Mediated Regulation of Plant Responses to Stress. United States Department of Agriculture, septiembre de 1993. http://dx.doi.org/10.32747/1993.7568096.bard.
Texto completoGurevitz, Michael, Michael E. Adams, Boaz Shaanan, Oren Froy, Dalia Gordon, Daewoo Lee y Yong Zhao. Interacting Domains of Anti-Insect Scorpion Toxins and their Sodium Channel Binding Sites: Structure, Cooperative Interactions with Agrochemicals, and Application. United States Department of Agriculture, diciembre de 2001. http://dx.doi.org/10.32747/2001.7585190.bard.
Texto completoFromm, A., Avihai Danon y Jian-Kang Zhu. Genes Controlling Calcium-Enhanced Tolerance to Salinity in Plants. United States Department of Agriculture, marzo de 2003. http://dx.doi.org/10.32747/2003.7585201.bard.
Texto completoLandau, Sergei Yan, John W. Walker, Avi Perevolotsky, Eugene D. Ungar, Butch Taylor y Daniel Waldron. Goats for maximal efficacy of brush control. United States Department of Agriculture, marzo de 2008. http://dx.doi.org/10.32747/2008.7587731.bard.
Texto completo