Literatura académica sobre el tema "T cells"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "T cells".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "T cells"

1

F. Abdel Hamid, Mahmoud, Safaa M. Morsy, Mostafa Abou El Ela, Rehab A. Hegazy, Marwa M. Fawzy, Laila A. Rashed, Ahmed M. Omar, Eman R. Abdel Fattah y Doaa M. Hany. "T helper-17 cells and T regulatory cells in vitiligo". International Journal of Academic Research 5, n.º 6 (10 de diciembre de 2013): 273–78. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Singh, Yuvraj. "Chimeric Antigen Receptors T Cells (CAR T) Therapy". International Journal of Science and Research (IJSR) 13, n.º 5 (5 de mayo de 2024): 1563–66. http://dx.doi.org/10.21275/sr24523173932.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Y, Elshimali. "Chimeric Antigen Receptor T-Cell Therapy (Car T-Cells) in Solid Tumors, Resistance and Success". Bioequivalence & Bioavailability International Journal 6, n.º 1 (2022): 1–6. http://dx.doi.org/10.23880/beba-16000163.

Texto completo
Resumen
CARs are chimeric synthetic antigen receptors that can be introduced into an immune cell to retarget its cytotoxicity toward a specific tumor antigen. CAR T-cells immunotherapy demonstrated significant success in the management of hematologic malignancies. Nevertheless, limited studies are present regarding its efficacy in solid and refractory tumors. It is well known that the major concerns regarding this technique include the risk of relapse and the resistance of tumor cells, in addition to high expenses and limited affordability. Several factors play a crucial role in improving the efficacy of immunotherapy, including tumor mutation burden (TMB), microsatellite instability (MSI), loss of heterozygosity (LOH), the APOBEC Protein Family, tumor microenvironment (TMI), and epigenetics. In this minireview, we address the current and future applications of CAR T-Cells against solid tumors and their measure for factors of resistance and success.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

CPK, Cheung. "T Cells, Endothelial Cell, Metabolism; A Therapeutic Target in Chronic Inflammation". Open Access Journal of Microbiology & Biotechnology 5, n.º 2 (2020): 1–6. http://dx.doi.org/10.23880/oajmb-16000163.

Texto completo
Resumen
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, stimulated immune cells need to generate sufficient energy and biomolecules to support growth, proliferation and effector functions, including migration, cytotoxicity and production of cytokines. Thus, immune cells switch from oxidative phosphorylation to aerobic glycolysis, increasing their glucose uptake. A similar metabolic reprogramming has been described in endothelial cells which have the ability to interact with and modulate the function of immune cells and vice versa. Nonetheless, this complicated interplay between local environment, endothelial and immune cells metabolism, and immune functions remains incompletely understood. We analyze the metabolic reprogramming of endothelial and T cells during inflammation and we highlight some key components of this metabolic switch that can lead to the development of new therapeutics in chronic inflammatory disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Meuer, Stefan C. "T cells". Immunology Today 12, n.º 1 (enero de 1991): 49. http://dx.doi.org/10.1016/0167-5699(91)90117-c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Stauss, Hans J. "Engineered T cells can fight malignant T cells". Blood 126, n.º 8 (20 de agosto de 2015): 927–28. http://dx.doi.org/10.1182/blood-2015-07-652057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Scott, David W. "T regulatory cells turn on T regulatory cells". Blood 114, n.º 19 (5 de noviembre de 2009): 3975–76. http://dx.doi.org/10.1182/blood-2009-09-241406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Zahran F, Zahran F., Al-haggar M. Al-haggar M y Derbala S. A. Derbala S.A. "Regulatory T Cells in Pediatric Lupus Nephritis". Indian Journal of Applied Research 3, n.º 10 (1 de octubre de 2011): 1–3. http://dx.doi.org/10.15373/2249555x/oct2013/91.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ng, Y. H., M. H. Oberbarnscheidt, H. C. K. Chandramoorthy, R. Hoffman y G. Chalasani. "B Cells Help Alloreactive T Cells Differentiate Into Memory T Cells". American Journal of Transplantation 10, n.º 9 (27 de agosto de 2010): 1970–80. http://dx.doi.org/10.1111/j.1600-6143.2010.03223.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Suzuki, Haruhiko, Zhe Shi, Yusuke Okuno y Ken-ichi Isobe. "Are CD8+CD122+ cells regulatory T cells or memory T cells?" Human Immunology 69, n.º 11 (noviembre de 2008): 751–54. http://dx.doi.org/10.1016/j.humimm.2008.08.285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "T cells"

1

Carson, Bryan David. "Impaired T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8337.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lloyd, Angharad. "Gene editing in T-cells and T-cell targets". Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/98512/.

Texto completo
Resumen
Recent years have witnessed a rapid proliferation of gene editing in mammalian cells due to the increasing ease and reduced cost of targeted gene knockout. There has been much excitement about the prospect of engineering T-cells by gene editing in order to provide these cells with optimal attributes prior to adoptive cell therapy for cancer and autoimmune disease. I began by attempting to compare short hairpin RNA (shRNA) and zinc finger nuclease (ZFN) approaches using the CD8A gene as a target for proof of concept of gene editing in Molt3 cells. During the course of my studies the clustered regularly interspaced short palindromic repeats (CRISPR) mechanism for gene editing was discovered so I also included CRISPR/Cas9 in my studies. A direct comparison of the three gene editing tools indicated that the CRISPR/Cas9 system was superior in terms of ease, efficiency of knockout and cost. As the use of gene editing tools increases there are concerns about the inherent risks associated with the use of nuclease based gene editing tools prior to cellular therapy. Expression of nucleases can lead to off target mutagenesis and malignancy. To circumvent this problem I generated a non-nuclease based gene silencing system using the CD8A zinc finger (ZF) fused to a Krüppel associated box (KRAB) repressor domain. The ZF-KRAB fusion resulted in effective silencing of the CD8A gene in both the Molt3 cell line and in primary CD8+ T-cells. Importantly, unlike CRISPR/Cas9 based gene editing, the ZF-KRAB fusion was small enough to be transferred in a single lentiviral vector with a TCR allowing simultaneous redirection of patient T-cell specificity and alteration of T-cell function in a single construct. To improve the efficiency of gene editing with CRISPR/Cas9 I developed an ‘all in one’ CRISPR/Cas9 system which incorporated all elements of the CRISPR/Cas9 gene editing system in a single plasmid. The ‘all in one’ system was utilised to derive MHC-related protein 1 (MR1) deficient clones from the A549 lung carcinoma and THP-1 monocytic cell lines in order to study MR1 biology. Mucosal-associated invariant T-cell (MAIT) clones were not activated by MR1 deficient A549 or THP-1 clones infected with bacteria.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Stefkova, Martina. "Regulatory T cells control the CD4 T cell repertoire". Doctoral thesis, Universite Libre de Bruxelles, 2016. https://dipot.ulb.ac.be/dspace/bitstream/2013/233151/3/Table.pdf.

Texto completo
Resumen
Des études récentes menées chez l’homme et la souris ont suggéré que la diversité du répertoire TCR pourrait jouer un rôle dans la protection contre des pathogènes à haut pouvoir mutagène. Afin d’étudier le répertoire des lymphocytes T CD4, nous avons utilisé un modèle de souris TCRβ transgéniques exprimant une chaine β spécifique du peptide env122-141 dans le contexte du MHCII. Suite à l’immunisation des souris TCRβ transgéniques avec des cellules dendritiques pulsées avec le peptide env, une rapide prolifération et une restriction du répertoire des lymphocytes T Vα2 CD4 spécifiques est observée. L’analyse de la diversité du répertoire de ces cellules par séquençage à haut débit, a montré l’émergence d’un répertoire plus divers dans des souris déplétées en lymphocytes T régulateurs. Ces résultats suggèrent qu’en plus du rôle des Tregs dans le contrôle de la magnitude de la réponse immunitaire, ces cellules pourraient également contrôler la diversité du répertoire des lymphocytes T suite à une stimulation antigénique.
Recent studies conducted in mice and humans have suggested a role for the TCR repertoire diversity in immune protection against pathogens displaying high antigenic variability. To study the CD4 T cell repertoire, we used a mouse model in which T cells transgenically express the TCRβ chain of a TCR specific to a MHCII-restricted peptide, env122-141. Upon immunization with peptide-pulsed dendritic cells, antigen-specific Vα2+ CD4+ T cells rapidly expand and display a restricted TCRα repertoire. In particular, analysis of receptor diversity by high-throughput TCR sequencing in immunized mice suggests the emergence of a broader CDR3 Vα2 repertoire in Treg-depleted mice. These results suggest that Tregs may play a role in the restriction of the CD4 T cell repertoire during an immune response, raising therefore the possibility that in addition to controlling the magnitude of an immune response, regulatory cells may also control the diversity of TCRs in response to antigen stimulation.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Butcher, Sarah A. "T cell receptor genes of influenza A haemagglutinin specific T cells". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315271.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Crawford, A. "How B cells influence T cell responses". Thesis, University of Edinburgh, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.645118.

Texto completo
Resumen
Although studies using B cell deficient mice have been useful in understanding the importance of B cells under different conditions, it is difficult to then dissect exactly how B cells could be regulating T cell responses. By transferring OT-II transgenic T cells into either B cell deficient (μMT) or C57BL/6 mice, expansion and contraction of T cells can be tracked ex vivo. Expansion of OT-II cells is reduced in μMT mice compared to C57BL/6 mice. Thus, B cells can provide costimulatory signals, secrete cytokines and influence the lymphoid microarchitecture. To dissect which B cell factor(s) are involved in enhancing OT-II T cell expansion, a model system was used where one molecule on the B cells is depleted at one time. This was achieved by creating bone-marrow chimeras using a combination of μMT bone-marrow and wildtype or deficient bone-marrow. Thus, all the B cells are either wildtype or deficient for a particular molecule. The molecules examined were MHC-II, which is required for antigen presentation, CD40, due to its costimulatory role, and lymphotoxin-alpha, for its role in maintenance of splenic architecture. Using the OT-II adoptive transfer system, we have shown a requirement for MHC-II but not CD40 on B cells for efficient T cell expansion. In light of these observations, the role of B cell-derived MHC-II for T cell memory generation was examined. To do this, I used MHC-II tetramers to track a polyclonal population of T cells in the host.  Using this technique, I have shown that T cell memory is also diminished when the B cells do not express MHC-II. Thus, a cognate interaction with B cells is required for both efficient expansion and memory generation of CD4+ T cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sarris, Milka. "Dynamics of helper T cell and regulatory T cell interactions with dendritic cells". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611896.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Smith, Trevor Robert Frank. "Modulation of CD4+ T cell responses by CD4+CD25+ regulatory T cells and modified T cell epitopes". Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/11317.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Murray, Nicholas. "Costimulation of T cells and its role in T cell recognition of malignant colorectal cells in vitro". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Ming 1957. "Generation of CD8+ T cell immunity with help from CD4+ T cells". Monash University, Dept. of Pathology and Immunology, 2002. http://arrow.monash.edu.au/hdl/1959.1/8476.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Soper, David Michael. "Interleukin-2 receptor and T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "T cells"

1

Marc, Feldmann, Lamb Jonathan R y Owen M. J, eds. T cells. New York: Wiley, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Annunziato, Francesco, Laura Maggi y Alessio Mazzoni, eds. T-Helper Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1311-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gigante, Margherita y Elena Ranieri, eds. Cytotoxic T-Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1507-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ono, Masahiro, ed. Regulatory T-Cells. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2647-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zanetti, Maurizio y Stephen P. Schoenberger, eds. Memory T Cells. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6451-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ranieri, Elena, ed. Cytotoxic T-Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1158-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Waisman, Ari y Burkhard Becher, eds. T-Helper Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1212-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kassiotis, George y Adrian Liston, eds. Regulatory T Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zanetti, M. Memory T cells. New York: Springer Science+Business Media, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Graca, Luis, ed. T-Follicular Helper Cells. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1736-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "T cells"

1

Srinivasan, Ramachandran. "T Cells". En Encyclopedia of Systems Biology, 2119. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_959.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nomura, Takashi y Aya Shinohara. "T Cells". En Immunology of the Skin, 57–94. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55855-2_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Arampatzis, Adamantios, Lida Mademli, Thomas Reilly, Mike I. Lambert, Laurent Bosquet, Jean-Paul Richalet, Thierry Busso et al. "T Cells". En Encyclopedia of Exercise Medicine in Health and Disease, 843. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sakaguchi, Shimon. "Regulatory T Cells: History and Perspective". En Regulatory T Cells, 3–17. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lahl, Katharina y Tim Sparwasser. "In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model". En Regulatory T Cells, 157–72. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Daniel, Carolin, Hidde Ploegh y Harald von Boehmer. "Antigen-Specific Induction of Regulatory T Cells In Vivo and In Vitro". En Regulatory T Cells, 173–85. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nouzé, Clémence, Lise Pasquet y Joost P. M. van Meerwijk. "In Vitro Expansion of Alloantigen-Specific Regulatory T Cells and Their Use in Prevention of Allograft Rejection". En Regulatory T Cells, 187–96. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

d’Hennezel, Eva y Ciriaco A. Piccirillo. "Analysis of Human FOXP3+ Treg Cells Phenotype and Function". En Regulatory T Cells, 199–218. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hobeika, Amy C., Michael A. Morse, Takuya Osada, Sharon Peplinski, H. Kim Lyerly y Timothy M. Clay. "Depletion of Human Regulatory T Cells". En Regulatory T Cells, 219–31. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Schneider, Anya y Jane H. Buckner. "Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay". En Regulatory T Cells, 233–41. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "T cells"

1

Mamonkin, Maksim. "Abstract IA17: CAR T cells for T-cell lymphoma". En Abstracts: AACR Virtual Meeting: Advances in Malignant Lymphoma; August 17-19, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2643-3249.lymphoma20-ia17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ahmed, M. N., A. Chester, A. McCormack, K. Ayyasola, N. Zaghloul, E. Miller y M. Yacoub. "CD4+ ChAT+ T Cells (ChAT T Cells) as a New Vasodilator". En American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2675.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Correia, Eduardo, Clara Andrade, Leonardo Silva, Brenno Sessa, Luiza Abdo, Karina Hajdu, Emmanuel Aragão y Martín Bonamino. "Generation of 19bbz CAR-T cells in tcr knockout T-cells". En International Symposium on Immunobiologicals. Instituto de Tecnologia em Imunobiológicos, 2023. http://dx.doi.org/10.35259/isi.2023_58059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rabin, Moriah, Erin Cole, Scott Garforth, Jian Hua Zheng, Steven Almo y Harris Goldstein. "295 Novel T-cell immunotherapeutics enable the selective generation of more potently cytotoxic CD19 chimeric antigen receptor T-cells (CAR-T cells) from CMV-specific cytotoxic T-cells". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Matsuda, Tatsuo, Taigo Kato, Yuji Ikeda, Matthias Leisegang, Sachiko Yoshimura, Tetsuro Hikichi, Makiko Harada et al. "Abstract 625: Eradication of cancer cells by T-cell receptor-engineered T cells targeting neoantigens/oncoantigens". En Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Greenberg, Philip D., Sebastian Ochsenreither, Tom Schmitt, David Aggen, David Kranz, Matthias Wolfl, Jurgen Kuball et al. "Abstract IA1: T cells vs. tumor cells: Arming/deploying T cells for a successful battle." En Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-ia1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kristensen, Nikolaj Pagh, Christina Heeke, Siri A. Tvingsholm, Anne-Mette Bjerregaard, Arianna Draghi, Amalie Kai Bentzen, Rikke Andersen, Marco Donia, Inge Marie Svane y Sine Reker Hadrup. "Abstract A14: Neoepitope-specific CD8+ T cells in adoptive T-cell transfer". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jing, Ran, Mohamad Najia, Eleanor Meader, Luca Hensch, Edroaldo Lummertz da Rocha, R. Grant Rowe, Thorsten Schlaeger, Marcela Maus, Trista North y George Daley. "950 Epigenetic reprogramming of iPSC-derived T cells for CAR T cell therapy". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0950.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hwang, Sunhee, Young H. Kim, Yeeun Bak y Byoung S. Kwon. "442-L Development of Panck T cells, MR1-restricted pan-cancer-killing CD8+T cells, as an adoptive T cell therapeutics". En SITC 38th Annual Meeting (SITC 2023) Abstracts Supplement 2. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0442-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Qian, Feng, Jianqun Liao, Anthony J. Miliotto, Katherine A. Collins y Kunle Odunsi. "Abstract A35: Ovarian cancer stem cells subvert tumor-specific T cells by disrupting T cells’ metabolic fitness". En Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-a35.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "T cells"

1

Chen, Xiuxu y Jenny E. Gumperz. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells. Fort Belvoir, VA: Defense Technical Information Center, abril de 2006. http://dx.doi.org/10.21236/ada462826.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wong, Jr y K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, junio de 2008. http://dx.doi.org/10.21236/ada487614.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Wong, Jr y K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, junio de 2009. http://dx.doi.org/10.21236/ada510759.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Knutson, Keith L. CD8 T Cells and Immunoediting of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2008. http://dx.doi.org/10.21236/ada624685.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Junghans, Richard P. Designer T-Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada394380.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, julio de 2001. http://dx.doi.org/10.21236/ada398295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, julio de 2002. http://dx.doi.org/10.21236/ada408881.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Junghans, Richard. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, julio de 2000. http://dx.doi.org/10.21236/ada383028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Coukos, George. Targeting Breast Cancer with T Cells Redirected to the Vasculature. Addendum. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada570217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Marshall, Renee M. Regulation of T-Type Cyclin/CDK9 Complexes in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, julio de 2005. http://dx.doi.org/10.21236/ada460789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía