Artículos de revistas sobre el tema "Synthesis in molten salts"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Synthesis in molten salts".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Yang, Rui Song, Li Shan Cui, Yan Jun Zheng y Jin Long Zhao. "Synthesis of TiNi Particles in High Temperature Molten Salts". Materials Science Forum 475-479 (enero de 2005): 1941–44. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1941.
Texto completoZhang, Jin Hua, Si Xiong, Chang Ming Ke, Hong Dan Wu y Xin Rong Lei. "Synthesis and Reaction Mechanism of Ti3SiC2 by Molten Salt Method from Ti-Si-Fe Alloy". Key Engineering Materials 768 (abril de 2018): 159–66. http://dx.doi.org/10.4028/www.scientific.net/kem.768.159.
Texto completoGrabis, Jānis, Gundega Heidemane y Aija Krūmiņa. "Synthesis of NiO Nanoparticles by Microwave Assisted and Molten Salts Methods". Key Engineering Materials 721 (diciembre de 2016): 71–75. http://dx.doi.org/10.4028/www.scientific.net/kem.721.71.
Texto completoYolshina, V. A. y L. A. Yolshina. "Electrochemical Synthesis of Graphene in Molten Salts". Russian Metallurgy (Metally) 2021, n.º 2 (febrero de 2021): 206–12. http://dx.doi.org/10.1134/s0036029521020051.
Texto completoKuznetsov, S. A. "Electrochemical Synthesis of Nanomaterials in Molten Salts". Journal of The Electrochemical Society 164, n.º 8 (2017): H5145—H5149. http://dx.doi.org/10.1149/2.0261708jes.
Texto completoKuznetsov, S. A. "Electrochemical Synthesis of Nanomaterials in Molten Salts". ECS Transactions 75, n.º 15 (23 de septiembre de 2016): 333–39. http://dx.doi.org/10.1149/07515.0333ecst.
Texto completoYang, Jiarong, Wei Weng y Wei Xiao. "Electrochemical synthesis of ammonia in molten salts". Journal of Energy Chemistry 43 (abril de 2020): 195–207. http://dx.doi.org/10.1016/j.jechem.2019.09.006.
Texto completoDevyatkin, S. V., O. I. Boiko, N. N. Uskova y G. Kaptay. "Electrochemical Synthesis of Titanium Silicides from Molten Salts". Zeitschrift für Naturforschung A 56, n.º 11 (1 de noviembre de 2001): 739–40. http://dx.doi.org/10.1515/zna-2001-1107.
Texto completoWang, Wei, Gui Wu Liu, Guan Jun Qiao, Jian Feng Yang, Hong Wei Li y Ya Jie Guo. "Molten Salt Synthesis of Mullite Whiskers from Silicon Carbide Precursor". Materials Science Forum 724 (junio de 2012): 299–302. http://dx.doi.org/10.4028/www.scientific.net/msf.724.299.
Texto completoZhao, Shi Xi, Qiang Li, Feng Bing Song, Chun Hong Li y De Zhong Shen. "Molten Salts Synthesis of Relaxor Ferroelectrics PMN-PT Powders". Key Engineering Materials 336-338 (abril de 2007): 10–13. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.10.
Texto completoLi, Hui, Jing Long Liang y Yun Gang Li. "Studies on Synthesis Mechanism of Fe-Si Alloy". Advanced Materials Research 886 (enero de 2014): 20–23. http://dx.doi.org/10.4028/www.scientific.net/amr.886.20.
Texto completoDENG, YIQUN y BIN YANG. "PREPARATION OF 3 MOL.% YTTRIA-FULLY-STABILIZED ZIRCONIA NANOPOWDERS BY MOLTEN SALTS/COPRECIPITATION METHOD AT LOW TEMPERATURE". Nano 08, n.º 02 (abril de 2013): 1350015. http://dx.doi.org/10.1142/s179329201350015x.
Texto completoYang, Ruisong, Lishan Cui y Yanjun Zheng. "The Synthesis of Composite Particles in Molten Salts". MATERIALS TRANSACTIONS 47, n.º 3 (2006): 584–86. http://dx.doi.org/10.2320/matertrans.47.584.
Texto completoBUKATOVA, Galina A. y Sergey A. KUZNETSOV. "Electrochemical Synthesis of Neodymium Borides in Molten Salts". Electrochemistry 73, n.º 8 (5 de agosto de 2005): 627–29. http://dx.doi.org/10.5796/electrochemistry.73.627.
Texto completoShavel, A., L. Guerrini y R. A. Alvarez-Puebla. "Colloidal synthesis of silicon nanoparticles in molten salts". Nanoscale 9, n.º 24 (2017): 8157–63. http://dx.doi.org/10.1039/c7nr01839h.
Texto completoLi, Zushu, William Edward Lee y Shaowei Zhang. "Low-Temperature Synthesis of CaZrO3Powder from Molten Salts". Journal of the American Ceramic Society 90, n.º 2 (febrero de 2007): 364–68. http://dx.doi.org/10.1111/j.1551-2916.2006.01383.x.
Texto completoYoshii, Kenji y Hideki Abe. "Electrochemical synthesis of superconductive MgB2 from molten salts". Physica C: Superconductivity 388-389 (mayo de 2003): 113–14. http://dx.doi.org/10.1016/s0921-4534(02)02674-6.
Texto completoKaptay, G. y S. A. Kuznetsov. "Electrochemical synthesis of refractory borides from molten salts". Plasmas & Ions 2, n.º 2 (enero de 1999): 45–56. http://dx.doi.org/10.1016/s1288-3255(00)87686-8.
Texto completoAbdelkader, Amr M. "Molten salts electrochemical synthesis of Cr 2 AlC". Journal of the European Ceramic Society 36, n.º 1 (enero de 2016): 33–42. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.09.003.
Texto completoAbdelkader, Amr M. "Electrochemical synthesis of highly corrugated graphene sheets for high performance supercapacitors". Journal of Materials Chemistry A 3, n.º 16 (2015): 8519–25. http://dx.doi.org/10.1039/c5ta00545k.
Texto completoIto, Y. y T. Nishikiori. "Novel electrochemical reactions related to electrodeposition and electrochemical synthesis". Journal of Mining and Metallurgy, Section B: Metallurgy 39, n.º 1-2 (2003): 233–49. http://dx.doi.org/10.2298/jmmb0302233i.
Texto completoCahen, S., I. El-Hajj, L. Speyer, P. Berger, G. Medjahdi, P. Lagrange, G. Lamura y C. Hérold. "Original synthesis route of bulk binary superconducting graphite intercalation compounds with strontium, barium and ytterbium". New Journal of Chemistry 44, n.º 24 (2020): 10050–55. http://dx.doi.org/10.1039/c9nj06423k.
Texto completoPornpatdetaudom, Thanataon y Karn Serivalsatit. "Effect of Molten Salts on Synthesis and Upconversion Luminescence of Ytterbium and Thulium-Doped Alkaline Yttrium Fluorides". Key Engineering Materials 766 (abril de 2018): 34–39. http://dx.doi.org/10.4028/www.scientific.net/kem.766.34.
Texto completoNithyadharseni, P., M. V. Reddy, Ho Fanny, S. Adams y B. V. R. Chowdari. "Facile one pot synthesis and Li-cycling properties of MnO2". RSC Advances 5, n.º 74 (2015): 60552–61. http://dx.doi.org/10.1039/c5ra09278g.
Texto completoZhang, Quan, Guo Feng, Feng Jiang, Jianmin Liu, Lifeng Miao, Qian Wu, Tao Wang y Weihui Jiang. "Facile preparation of ZrO2 whiskers by LiF-KCl molten salts synthesis". Processing and Application of Ceramics 15, n.º 3 (2021): 219–25. http://dx.doi.org/10.2298/pac2103219z.
Texto completoKumar, Ram, Mounib Bahri, Yang Song, Francisco Gonell, Cyril Thomas, Ovidiu Ersen, Clément Sanchez, Christel Laberty-Robert y David Portehault. "Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reaction". Nanoscale 12, n.º 28 (2020): 15209–13. http://dx.doi.org/10.1039/d0nr04284f.
Texto completoTANG, XIAOPING, YANFENG GAO, HONGFEI CHEN y HONGJIE LUO. "MOLTEN SALT ASSISTED SYNTHESIS OF LUTETIUM SILICATE NANOPARTICLES". Functional Materials Letters 04, n.º 03 (septiembre de 2011): 277–82. http://dx.doi.org/10.1142/s1793604711001920.
Texto completoGryaznov, Artem N., Daniil S. Slesarev y V. Sergeevich Dolmatov. "Currentless production of chromium carbides on carbon fibers in NaCl-KCl-CrCl3-Cr melt". Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 14, n.º 5/2023 (20 de diciembre de 2023): 29–32. http://dx.doi.org/10.37614/2949-1215.2023.14.5.005.
Texto completoLiu, Siliang, Jingsan Xu, Jixin Zhu, Yuanqin Chang, Haige Wang, Zhichong Liu, Yang Xu, Chao Zhang y Tianxi Liu. "Leaf-inspired interwoven carbon nanosheet/nanotube homostructures for supercapacitors with high energy and power densities". Journal of Materials Chemistry A 5, n.º 37 (2017): 19997–20004. http://dx.doi.org/10.1039/c7ta04952h.
Texto completoNovoselova, Inessa, Serhii Kuleshov y Anatoliy Omel'chuk. "Electrolytical Carbon Nanostructures from Molten Salts: Synthesis and Properties". ECS Meeting Abstracts MA2021-02, n.º 6 (19 de octubre de 2021): 539. http://dx.doi.org/10.1149/ma2021-026539mtgabs.
Texto completoKuznetsov, Sergey A. y Svetlana V. Kuznetsova. "Electrochemical Synthesis of Niobium-Hafnium Coatings in Molten Salts". Zeitschrift für Naturforschung A 62, n.º 7-8 (1 de agosto de 2007): 425–30. http://dx.doi.org/10.1515/zna-2007-7-812.
Texto completoAbe, Hideki y Kenji Yoshii. "Electrochemical Synthesis of Superconductive Boride MgB2 from Molten Salts". Japanese Journal of Applied Physics 41, Part 2, No. 6B (15 de junio de 2002): L685—L687. http://dx.doi.org/10.1143/jjap.41.l685.
Texto completoKuznetsov, S. A., V. V. Grinevich, A. V. Arakcheeva y V. T. Kalinnikov. "Electrochemical synthesis of tantalum monoxide nanoneedles in molten salts". Doklady Chemistry 428, n.º 1 (septiembre de 2009): 218–21. http://dx.doi.org/10.1134/s0012500809090043.
Texto completoChoo, Hyun-Suk, Kwan-Young Lee, Yun-Sung Kim y Jung-Ho Wee. "Synthesis of Ni3Al intermetallic powder in eutectic molten salts". Intermetallics 13, n.º 2 (febrero de 2005): 157–62. http://dx.doi.org/10.1016/j.intermet.2004.07.042.
Texto completoKim, Hyun y Byeongnam Jo. "Anomalous Increase in Specific Heat of Binary Molten Salt-Based Graphite Nanofluids for Thermal Energy Storage". Applied Sciences 8, n.º 8 (5 de agosto de 2018): 1305. http://dx.doi.org/10.3390/app8081305.
Texto completoZhang, Liyuan, Mengran Wang, Yuekun Lai y Xiaoyan Li. "Oil/molten salt interfacial synthesis of hybrid thin carbon nanostructures and their composites". Journal of Materials Chemistry A 6, n.º 12 (2018): 4988–96. http://dx.doi.org/10.1039/c7ta10692k.
Texto completoWang, Xue Ying, Yong Ping Zhu y Wei Gang Zhang. "Preparation of La2Ce2O7 Nano-Powders by Molten Salts Method". Advanced Materials Research 79-82 (agosto de 2009): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.337.
Texto completoZhang, Kechen, Changxin Liu, Qiang Liu, Zheyang Mo y Dawei Zhang. "Salt-Mediated Structural Transformation in Carbon Nitride: From Regulated Atomic Configurations to Enhanced Photocatalysis". Catalysts 13, n.º 4 (10 de abril de 2023): 717. http://dx.doi.org/10.3390/catal13040717.
Texto completoAngappan, S., N. Kalaiselvi, R. Sudha y A. Visuvasam. "Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique". International Scholarly Research Notices 2014 (31 de agosto de 2014): 1–6. http://dx.doi.org/10.1155/2014/123194.
Texto completoLi, Xiaoqiao, Linming Zhou, Han Wang, Dechao Meng, Guannan Qian, Yong Wang, Yushi He et al. "Dopants modulate crystal growth in molten salts enabled by surface energy tuning". Journal of Materials Chemistry A 9, n.º 35 (2021): 19675–80. http://dx.doi.org/10.1039/d1ta02351a.
Texto completoAndal, V., G. Buvaneswari y R. Lakshmipathy. "Synthesis of CuAl2O4 Nanoparticle and Its Conversion to CuO Nanorods". Journal of Nanomaterials 2021 (6 de septiembre de 2021): 1–7. http://dx.doi.org/10.1155/2021/8082522.
Texto completoZhao, Shi Xi, Qiang Li y Feng Bing Song. "Molten Salts Synthesis and Dielectric Properties of PMN-PT Ceramics". Materials Science Forum 475-479 (enero de 2005): 1153–56. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1153.
Texto completoAlShehri, Saad M., Jahangeer Ahmed, Tansir Ahamad, Prabhakarn Arunachalam, Tokeer Ahmad y Aslam Khan. "Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)". RSC Adv. 7, n.º 72 (2017): 45615–23. http://dx.doi.org/10.1039/c7ra07256b.
Texto completoMurakami, Tsuyoshi, Tokujiro Nishikiori, Toshiyuki Nohira y Yasuhiko Ito. "Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure". Journal of the American Chemical Society 125, n.º 2 (enero de 2003): 334–35. http://dx.doi.org/10.1021/ja028891t.
Texto completoFuentes, L., M. GarcÍa, D. Bueno, M. E. Fuentes y A. Muñoz. "Magnetoelectric Effect in Bi5Ti3FeO15 Ceramics Obtained by Molten Salts Synthesis". Ferroelectrics 336, n.º 1 (julio de 2006): 81–89. http://dx.doi.org/10.1080/00150190600695883.
Texto completoZhao, Jinlong, Lishan Cui, Wanfu Gao y Yanjun Zheng. "Synthesis of NiTi particles by chemical reaction in molten salts". Intermetallics 13, n.º 3-4 (marzo de 2005): 301–3. http://dx.doi.org/10.1016/j.intermet.2004.07.023.
Texto completoBurke, Sven Anders y Jay Whitacre. "Molten Salt Synthesis of High-Performance Cobalt Free Lithium Excess Cathodes". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de octubre de 2022): 293. http://dx.doi.org/10.1149/ma2022-023293mtgabs.
Texto completoSaadi, L., R. Moussa, A. Samdi y A. Mosset. "Synthesis of mullite precursors in molten salts. Influence of the molten alkali nitrate and additives". Journal of the European Ceramic Society 19, n.º 4 (abril de 1999): 517–20. http://dx.doi.org/10.1016/s0955-2219(98)00220-9.
Texto completoZhang, Haoran, Mengshuo Li, Ze Zhou, Liming Shen y Ningzhong Bao. "Microstructure and Morphology Control of Potassium Magnesium Titanates and Sodium Iron Titanates by Molten Salt Synthesis". Materials 12, n.º 10 (14 de mayo de 2019): 1577. http://dx.doi.org/10.3390/ma12101577.
Texto completoInagaki, Michio y Zheng-De Wang. "Synthesis of Graphite Intercalation Compounds in Molten Salts of Metal Chlorides". TANSO 1992, n.º 153 (1992): 184–96. http://dx.doi.org/10.7209/tanso.1992.184.
Texto completo